Trends in Rail Electrification

International Conference on Decarbonization of Indian Railway – Mission Electrification

René Wimmer
Content

Megatrends Require Mobility Solutions

Rail Electrification Systems Overview

Rail Electrification Requirements

Rail Electrification in the Smart Grid Age

Trends in Monitoring & Maintenance

References
Two new city dwellers per second!
The dawn of the “urban millennium” has started!

Urban Millennium

Population
In 2007 ~50% of the world’s population was living in cities, an increase from 3.5B to 4.7B until 2030

Regional powerhouses
50% of world GDP is produced in cities with a population over 750K

Major energy and climate factor
75% of energy consumed in cities; 80% of CO₂ emissions are produced in cities
The transportation of people and goods has top priority for cities as ...

... #1 on mayors’ political agendas\(^1\)

“We are investing billions in improving the transport network and easing the burden for millions of commuters. And the whole purpose of that investment is making public transport better and easier for people to use.”

Boris Johnson, Mayor of London

\(^1\) Source: Megacity Challenges Study by GlobeScan and MRC McLean Hazel
The transportation of people and goods has top priority for cities as ...

... most important driver for “Quality of Life”

“Congestion has several effects on travelers, businesses, agencies and cities. One significant element is the value of the additional time and wasted fuel. 1.9 billion gallons of fuel were wasted in the 439 U.S. urban areas. This amount of fuel would fill 38 super-tankers or 210,000 gasoline tank trucks.”

Texas Transportation Institute
The transportation of people and goods has top priority for cities as ...

... key success factor for global competitiveness

“Today, 64% of all travel kilometers made are urban... Being able to get around urban areas quickly, conveniently and with little environmental impact is critical to cities’ success”

Arthur D. Little, Management Consultancy
Content

Megatrends Require Mobility Solutions

Rail Electrification Systems Overview

Rail Electrification Requirements

Rail Electrification in the Smart Grid Age

Trends in Monitoring & Maintenance

References
Energy flow
Rail Electrification

Generation
- Power plant
 - Conventional power plants
 - Renewables

Transmission/Distribution
- High-voltage/Medium-voltage
 - Transmission
 - Distribution

Conversion
- Substation
 - AC substation/ converter
 - DC substation

Feeding/Return line
- Contact line/Track
 - Main-line
 - Mass transit
Market segments

Contact Line for Main-line Railways

Contact Line for Mass Transit

Network Control

AC Traction Power Supply

DC Traction Power Supply
Operator requirements
Rail Electrification

Safety of Personnel and Installations + Maximum Availability + Minimum Life Cycle Costs = Ideal Rail Electrification System
Stakeholder requirements
Rail Electrification

<table>
<thead>
<tr>
<th>Transportation performance</th>
<th>Economic efficiency (LCC)</th>
<th>Availability</th>
<th>Electrical safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Vehicles</td>
<td>- Investment</td>
<td>- Reliable supply</td>
<td>- Operators</td>
</tr>
<tr>
<td>- Timetable</td>
<td>- Operation</td>
<td>- Redundancy</td>
<td>- Passengers, pedestrians</td>
</tr>
<tr>
<td></td>
<td>- Maintenance</td>
<td></td>
<td>- Protection of installations</td>
</tr>
</tbody>
</table>

Power utilities requirements

- System interactions
- Peak loads
- Measurement and protection

Energy saving

- ISO 50001
- Intelligent load management

Standards

- Local
- International

Geographic requirements

- Climate
- Topography

Environmental compatibility

- Electrical and magnetic fields
- Noise emission
- Climate (CO₂)

Line requirements

- Stations
- Technical buildings
- Tunnels
- Viaducts
- Crossings

Rail Automation

- Signaling
- Control systems

© Siemens AG 2016

November 2016

siemens.com/rail-electrification
The complete range of services from a single source

Project management

Consulting/Financing Configuration (System Design) Configuration (Detailed Design) Production Delivery Installation/Commissioning Documentation Training Aftersales Service

Quality management
Content

Megatrends Require Mobility Solutions

Rail Electrification Systems
Overview

Rail Electrification Requirements

Rail Electrification in the Smart Grid Age

Trends in Maintenance

References
What is Smart Grid?
Rail Electrification in the Smart Grid Age – Traction power systems as part of changing energy systems

Challenges in energy system

- Renewable energy and distributed generation
- Limited grid and generation capacity
- Aging and insufficient infrastructures
- Cost and emissions of supply

Smart Grid solutions

- Balance of generation and demand, new business models
- Load management and power quality
- Reliability through monitoring, automatic power failure avoidance and troubleshooting
- More efficiency in generation, transmission, distribution and consumption
Two power grids converge

Integration of grids
- Integration of regenerative energy sources
- Recovery: bi-directional transfer of active power
- Power quality for both grids together

Traction power grid
- Generation and demand at the same time
- Load management
- Smart controls

Public grid
- Recovery within traction power grid
- Monitoring
- Network control
- Energy Management

Information exchange
- Smart monitoring solutions for both grids
How to increase safety for Disconnectors?
Disconnected monitoring system Sicat DMS

The Sicat DMS Disconnector monitoring system serves for safe detection and indication of the switch position.

• Contactless measuring method
• No influence on disconnector
• Reliable position indication directly on disconnector
 • By default on earth potential
 • Optional on contact line potential
• For all Siemens OCL disconnector types available
• Integration into control of drive mechanism or external evaluation unit
• Safety approved version available (SIL 1)
How to reduce maintenance for Disconnectors?

Low Maintenance Disconnector up to 25 kV AC (Sicat 8WL6144)

- Low-maintenance due to self-lubricating characteristic of silver graphite plated contact set
- Minimum wear at arc extinguishing due to tungsten tips at the arcing horns (load breaker function up to ten switchings)
- Long service life and low-maintenance due to corrosion resistant materials and hydrophobic surface of composite insulators
- Easy installation and resistant against vandalism due to shatter-proof composite insulators
- Higher current load-capacity and environmental resistance for certain variants due to silver-coated contacts

- Thanks to their modular design, suitable as disconnectors with and without earth contact in single-phase AC systems and autotransformer systems
How to improve my Depot?

Moveable overhead conductor rail

- Every 12 meter one support
- Motorized brackets
- Horizontal rotation of 84°
- Free area from centerline from 1.80 to 2.80 meters

In In-Rail position – the train can be supplied with electric power via overhead contact rigid and train’s pantographs.

In Out-Rail position – maintenance work can be done with full access to the train and without the risk of electric shock by touching the contact rail.
Moveable overhead conductor rail
Support Design

Motorized Support

Non - Motorized Support
Moveable overhead conductor rail
Customer Requirements

- Safety concept based on the five security rules including earthing
- Key Concept to protect for operation errors and secure a safe working environment
- Visual and acoustic status indication
- Interlocking with other systems like crane and doors access
- High availability of the products and the complete system
- Monitoring of the system
Moveable overhead conductor rail
SICAT SRD meet all requirements of the customer

- Disconnector with Earthing function
- Interlocking concept
- Emergency Button on all motorized supports including monitoring
- Signal Beacons
- Control Panel for operation
- Status Monitoring and product failure diagnostic
- Products and Solution from one supplier
How to increase the availability and reduce maintenance for the overhead conduct line?

Damages in the Overhead contact line is one of the main problems for Train operator

videoplayback.mp4
Sicat PMS
Pantograph monitoring system for OCS

- Reliable measured value acquisition by laser sensor even in adverse weather conditions
- Measurement redundancy thanks to optional optomechanical angular position sensor
- Simple and reliable train identification by means of RFID technology
- Sicat PMS detects defective or improperly adjusted pantographs
- Forwards this information to a control centre
- Concerned trains can be stopped or rerouted in time

Increase system and operational safety!
Sicat® PMS – Pantograph Monitoring System
Main components – Measured value acquisition

Uplift measured by laser sensor

• Directly above the contact wire

• Metal plate, mounted on the contact wire, reflects the laser signal

• The power supply cable to the sensor will be encased by high voltage insulation

Uplift measurement by potential free optomechanical angular position sensor (optional)

• Mounted on
Sicat® PMS – Pantograph Monitoring System
Design - System topology

Operations control center

Network infrastructure

Evaluation station
Time synchronization
Climate data

Fiber optic cable, e.g. Profibus

Data acquisition station

Sensor cable

Measured value acquisition
1 Axle counter
2, 3 Uplift sensors
Sicat® CMS – Catenary Monitoring System

Sicat CMS can be installed in all tension wheel equipment of Siemens with weight sets and can be retrofitted in existing installations as well.

Functions

- Status monitoring of the overhead contact line
- Status monitoring of the tension wheel equipment
- Detection of tensile forces in the catenary system
- Detection of wire ruptures
- Detection of significant changes in the tensile force attributable to external influence
Sicat® CMS – Catenary Monitoring System
System topology

Example of the topology of a Sicat CMS: hierarchical cross-linking
Main components

- Sensors
- Data acquisition stations and evaluation stations (integrated if necessary)
- Fiber optic cable network
- Central or distributed power supply
Sicat® CMS – Catenary Monitoring System

Sicat CMS continuously monitors the tensile forces in the contact wire and catenary wire and passes the sensor information on to the control center.

- Increase of availability of electrified lines
- **Reduce of malfunction period due to quick detection, analysis and localization of faults**
- Prevention or limitation of subsequent damages
- Reduce of delays in operation
- Increase of security of systems and operation
- Reliable fault detection with geographical reference
- **Support of status-oriented maintenance due to early detection of faults and divergence of thresholds**
Improvement of availability and reduction of lifecycle costs with Aluminum Cantilever

- **Made of lightweight aluminum tubes compared to existing GI Cantilevers** – easy to install - Aluminum-tubes are easy to produce and easy to adjust (cut through)

- Great **mechanical strength** as well as an elegant metal design with a **long service life, high reliability leading to low maintenance cost, resistance to corrosion**, fit for > 200 kmph for Indian Railways (high speed applications).

- **Preassembly or delivery** of complete cantilever assemblies is possible (no cutting tasks on site), pre calculated fixing points of cantilever components reduces adjustment works on site, only one type of tool is needed from complete installation, lesser installation time i.e. 35 mins only no need of crane, only 2 workers on platform needed at time, indirect cost savings, it will help in achieving IR vision of fast track Railway Electrification > 3,000 RKM.

- Better Environment sustainability (less amount of material used) and operational safety (better short circuit withstand capability of Aluminum)
Installation of preassembled cantilever (Reduction in man hours)

Prepare installation

Installation without crane, only 2 workers on platform needed

Fixation
Content

Megatrends Require Mobility Solutions

Rail Electrification Systems Overview

Rail Electrification Requirements

Rail Electrification in the Smart Grid Age

Trends in Monitoring & Maintenance

References
Rail Electrification – Milestones
Siemens: Innovator, Provider and Partner No. 1

The first electric railway

First silicon rectifier for supplying DC railways

World speed record on rails of 406.9 km/h with standard overhead contact line

First electric tram with bow collector

First overhead catenary line

First digital protection devices in traction power supply

1879

1899

1905

1957

1988

1994

2006

2008

2010

2014

2015

Operation without overhead contact line with hybrid energy storage system

First mobile reactive power compensator

First inverter for a regenerative DC traction power supply

First modular multilevel converter in the AC traction power supply

First eHighway electrification system on public roads
Rail Electrification across all continents
Metro Lima, Peru

Challenge

- Seamless integration of new lines 2 and 4 into the existing metro system under consideration of customers CO₂ saving targets
- Minimal costs for civil works by optimal system engineering and use of space-saving equipment
- Strict EHS-requirements and high expectations on network power quality
- Highly available network control for traction power and infrastructure facilities

Solution

- Selection of space-saving GIS-types, which suit the requirements on low noise and electro-magnetic emissions for installation in residential areas
- 24-pulse rectifiers to fulfill requirements on low harmonics to the network
- Comprehensive Sitras RSC network control including backup operation control center and SIL 2 certification

Customer benefit

- Robust electrification systems with lowest life cycle costs
- Adherence to requirements from public grid system
- Savings on operational- and training costs due to a uniform and modern Scada systems for traction power supply and rail infrastructure (BMS)
Metro Riyadh, Saudi Arabia

Challenge
- With six lines and a total route length of 175 kilometers, Riyadh is planning the world’s largest subway project.
- Riyadh is growing rapidly: Since 1990, the population has doubled to more than five million inhabitants.

Solution
- Siemens is to supply the entire turnkey system for two driverless metro lines in the capital of Saudi Arabia.
- Siemens equips Lines 1 (Blue Line) and 2 (Red Line) of the six lines with Inspiro metro trains, the electrification and the signaling and communication systems for driverless operation.

Customer benefit
- One single point of contact
- Sustainable solutions for the city’s local traffic problems
- Proven interfaces, performance and reliability in all implemented projects
- Fulfillment of highest safety standards for operating the system
Rail Electrification Program, Denmark

Challenge

- Doubling the number of electrified tracks in Denmark
- New TSI-approved system that is both innovative and proven in operation
- Off-the-shelf components

Solution

- Overhead catenary system Sicat SX
- Siemens standard 8WL components

Customer benefit

- Reliable system
- Low investment cost
- Reduced cost throughout the complete lifetime of the system
Siemens provides innovative solutions, systems and products for traction power supply, contact lines and network control technology for the rail traffic of the future.

Siemens is the only provider in the industry offering a complete portfolio. From consulting to finance, from system design to implementation and aftersales service – Siemens implements projects around the world, always tailored to the individual requirements of the rail operator.

René Wimmer
Siemens AG
Mobility Division
rene.wimmer@siemens.com