GOVERNMENT OF INDIA MINISTRY OF RAILWAYS (RAILWAY BOARD)

2024/Proj./CMRL/SoD/PH-II/30/98

New Delhi, dated 13.05.2025

Managing Director, Chennai Metro Rail Limited (CMRL) No.327, Anna Salai, Nandanam, Chennai-600 035, Tamil Nadu.

Sub: Approval of Schedule of Dimensions (SoD) for Standard Gauge (1435 mm) for Chennai Metro Phase 2 project of Chennai Metro Rail Limited (CMRL)

Ref:

- (i) SoD document uploaded on RDSO's online portal by CMRL on 28.10.2024 along with compliance
- (ii) CMRL letter no. CMRL/PHASE II/RDSO/SOD dated 02.04.2025
- (iii) RDSO's letter no. UT/38/CMRL/Civil dated 18.03.2025

The Schedule of Dimensions (SoD) for Standard Gauge (1435 mm) for Chennai Metro Phase 2 project of Chennai Metro Pail Limited (CMRL) has been examined in consultation with RDSO and approval of Railway Board is hereby conveyed for the same.

Accordingly, approved copy of SoD is enclosed.

Encl: As above

(F. A. Ahmad)

Director/Gati Shakti (Civil)-IV Railway Board

Ph: 011-47845480

Email: dirgsc4@gmail.com

Copy to:

- Executive Director/UTHS, RDSO, Manak Nagar, Lucknow w.r.t letter No.UT/CMRL/CMRL/P02/072023 dated 11.11.2024
- OSD/UT & Ex-Officio Joint Secretary, Ministry of Housing & Urban Affairs (MoHUA), Nirman Bhavan, New Delhi-110011

CHENNAI METRO RAIL LIMITED

SCHEDULE OF DIMENSIONS FOR STANDARD GAUGE

(1435 mm)

CMRL PHASE 2 PROJECT

Examined and found in order

ক্তান্ত্ৰ / যুক্তি / বিশ্বিদ ADE/U.T./CIVIL ব্যুক্ত বৃহত বৃত্তি (বৈল পালাবে) P.D.B.O. (Ministry of Relivoys)

PLD.S.O. (Ministry of Rethrays) भागक गगर, लखनळ-228011 Manak Nagar, Lucknow-11 Silver Si

S ASHOK KUMAR, IPSE CreekGerenin Manager (Grant & Elevated) OHENNAI METRO RAILLIMITED METRO'S Anna Salay.

DOCUMENT VERIFICATION AND REVISION RECORD

PROJECT NAME		Chennai Metro Rail Project Phase – 2				
DOC/ NO.		P2C0000PRW000-0GC1-ENGERT-00001 DAT		DATE OF ISSUE	10-10-2024	
DOC	/ TITLE	Schedule of Dimensions for Standard Gauge (1435 mm)				
REV. No.	DATEOF ISSUE/REV.	DESCRIPTION	PREPARED / DESIGNED	CHECKED	APPROVED	
A1	25-04-2021	Submission for review	Dr. Selva	Mahatma	Tony	
A2	13-07-2021	Submission for Review	Dr. Selva	Mahatma	Tony	
А3	17-07-2021	Submission for Review	Dr. Šelva	Mahatma	Tony	
A4	14-09-2021	Submission for Review	Dr. Selva	Mahatma	Tony	
A5	23-Oct-2021	Submission for Review	Dr. Selva	Mahatma	Tony	
A6	14-Sep-2022	Submission for Review	Suresh D/ Selvaku	mar Dr. Selva	lan	
A7	29-Nov-2022	Submission for Review	Suresh D/ Selvaku	mar Dr. Selva	lan	
A8	13-Dec-2022	Submission for Review	Suresh D/ Selvaku	mar Dr. Selva	lan	
A9	16-Feb-2023	Submission for Review	Suresh D/ Selvaku	mar Dr. Selva	lan	
A10	08-Sep-2023	Submission for Review	Suresh D/ Selvaku	mar Dr. Selva	lan	
A11	31-Oct-2023	Submission for Review	Suresh D/ Selvaku	mar Dr. Selva	lan	
A12	16-Mar-2024	Submission for Review	Suresh D/ Şelvakul	mar Dr. Selva	lan	
A13	30-Jul-2024	Submission for Review	Suresa D/ Selvakui	mar Dr. Selva	lan	
A14	11-Sep-2024	Submission for Review	Suresh D/ Selvakur	mar Dr. Selva	lan	
A15	10-Oct-2024	Submission for Review	Suresh D/ Selvakur	mar Dr. Selva	lan	

REV. No.	Highlight of changes	of changes Payleten III.4		
	gg or ondinges	Revision History		
A2	Underline	CMRL/ DDC/GC comments updated		
A3	Underline	Internal GC review comments updated		
A4	Underline	CMRL Comments/SOD amendments / Highlighted changes from approved SOD		
A5	Underline	CMRL comments/update from DMRC SOD		
A6	Underline	CMRL/GC comments/update from DMRC SOD		
A7	Underline	CMRL/GC comments/update from DMRC SOD		
A8	Underline	CMRL/GC comments/update from DMRC SOD		
A9	Underline	CMRL/GC comments/update from RDSO Guidelines for framing SOD		
A10	Underline	RDSO Comments updated		
A11	Underline	RDSO Comments updated		

Examined and found in order

Examined and found in order

finder Kro. Nietra 2C0000PRW000-0GC1-ENGERT-00001

4

ACCULTOR

ille No. 2017/Proj. MRL/SoD/PH-II/30/98 (Computer No. 3480306)

Senerated from weoffice by AVINASH, JD/PROJECT(A). JD/PROJECT, Project Directorate on 13/05/2025 10:41 am

S. ASHOK KUMAR, IRSE
Cher General Manager
(Tracks & Elevated)
CHENNAI METRO PAIL LIMITEDIA
METROS Sans Safal,
Nandaram Chennai 500036

A12	Underline	RDSO Comments updated
A13	Underline	RDSO Comments updated
A14	Underline	RDSO Comments updated
A15	Underline	RDSO Comments updated

INDEX

PARA NO.	DESCRIPTION	PAGE NO
	Preamble	6
	Introduction	8
	CHAPTER – 1 GENERAL	
1.1	Spacing of Tracks	9
1.2	Curves	9
1.3	Gradients	10
1.4	Buildings and Structures	10
1.5	Kinematic Envelope	12
1.6	Structure Gauge	12
1.7	Extra Clearances on Curves	13
1.8	Minimum Track Spacing on Curves	15
1.9	Derailment Guard	17
	CHAPTER - 2 STATION	
2.1	Spacing of Track at Stations	18
2.2	Platforms	18
2.3	Track Gradient	19
2.4	Interlocking and Signal Gear	20
2.5	Points and Crossings	20
2.6	Super elevation and speed at stations on curves with turnouts of contrary and similar flexure	22
2.7	Additional clearance for platforms on Curves	22
	CHAPTER – 3 ROLLING STOCK	
3.1	Passenger Rolling Stock	23
3.2	Locomotives and Engineering Service Vehicles	24
	CHAPTER – 4 Overhead Electric Traction-25 KV AC 50 Hz cycles per second	
4.1	Electrical Clearances for underground	25
4.2	Electrical Clearances for AT-Grade and Elevated sections	26
4.3	The vertical clearance from Overhead line to power line crossing of Railway Tracks	27
	CHAPTER - 5 PLATFORM SCREEN DOOR(PSD)	
5.1	Setting Out Dimensions	30

camined and found in order

Bradeep Kon. Mishora PRW000-OGC1-ENGERT-00001

Page | 3

Chief Co- articularougus (Prock: & Elevated) CHERNAL METRO RAIL LIMITED METROS Revise Satis Mancascas, Condustr 600015

APPENDIX

APPENDIX NO.	DESCRIPTION	PAGE NO.
Appendix – 1	Permissible Speed, Cant and Minimum Track Spacing on Curves Underground(Tunnels), Elevated and At-Grade Sections	31
Appendix – 2A	Extra Horizontal Shift on Curves (Curvature effect) Inside of Curve	32
Appendix – 2B	Extra Horizontal Shift on Curves (Curvature effect) Outside of Curve	34
Appendix – 3	Cant Effect on Structure Gauge – Horizontal At Grade and Elevated	36
Appendix – 3 (TNL)	Cant Effect on Structure Gauge – Horizontal Underground sections (Rectangular Box Tunnel)	37
Appendix-3A	Cant Effect on Kinematic Envelope – Horizontal At Grade and Elevated Sections	38
Appendix-3A (TNL)	Cant Effect on Kinematic Envelope – Underground Sections (Rectangular Box/ Tunnel)	39
Appendix – 4	Lateral and Vertical Shift of Centre of Circular Tunnel for Different Cant Values	40
Appendix – 5	Additional Clearance for platforms on curves Underground, Elevated and At Grade Stations	41
Appendix – 6	Sample Egress Calculation for Underground Station	42
Appendix – 6A	Sample Egress Calculation for Elevated Station	43

Examined and found in order

ত্তনীতর্তুত / ভূচতীত / বিচাৰিয়া ADE/U.T./CIVIL ক্রচ কাত বাত (বৈল পাঁজনাৰ) R.D.S.O. (Ministry of Relivesys) স্থাপক পাশং, সম্পোত-228011 Manak Nagar, Lucknow-11

ile No. 2024/Proj./CMRL/SoD/PH-II/30/98 (Computer No. 3480306)

P2C0000PRW000-0GC1-ENGERT-00001

3enerated from eOffice by AVINASH, JD/PROJECT(A), JD/PROJECT, Project Directorate on 13/05/2025 10:41 am

6

S. ASHOK KUMAR, IRSE Chief General Manager (Tracks & Flevaled) CHENNAI METRO FAIL LIMITED METRO'S Anna Sutal Nandanam, Chengal 500035

LIST OF DRAWINGS 25 KV AC OHE TRACTION SYSTEM

SN	Drawing No.	Title	Page No.
1	CMSG-1	Kinematic Envelope for 90kmph –Through & Semi through Girder Bridges, At Grade and Elevated Sections on level (or constant grade) tangent track.	
2	CMSG-1A	Kinematic Envelope for 65 kmph – At Grade and Elevated Stations on level (or constant grade) tangent track.	45
3	CMSG- 1(TNL)	Kinematic Envelope for 90 kmph-Underground Sections on level (or constant grade) tangent track.	46
4	CMSG- 1A(TNL)	Kinematic Envelope for 65 kmph – Underground Stations on level (or constant grade) tangent track.	47
5	CMSG-2	Structure Gauge – At Grade and Elevated Sections on level or Constant Grade Tangent Track (Outside Station)	48
6	CMSG- 2(TNL)	Structure Gauge -Circular Tunnel (5800mm Dia) and Rectangular Box tunnel on tangent track and curve upto R=200M	49
7	CMSG-3	Shift of the Centre of Circular Tunnel due to rotation of Tunnel to provide cant	50
8	CMSG-4	Effect of cant on structure Gauge	51
9	CMSG-4A	Effect of cant on Kinematic envelope	52
10	CMSG-5	Effect of vertical curve on structure gauge	53
11	CMSG-6	Structural Clearance At – Grade and Elevated station with PSD in Side Platforms on level (or constant grade) tangent track	54
12	CMSG- 6(TNL)	Structural Clearance at Underground station with PSD in Side Platforms Rectangular Box Tunnel on level or constant grade tangent track	
13	CMSG-7	Structural Clearance at Elevated/At- Grade station with PSD in sland Platform on level or constant grade tangent track	
14	CMSG- 7(TNL)	Structural Clearance at Underground Station with PSD in Island Platform on level or constant grade tangent track	57
15	CMSG-8	Emergency Walkway Arrangements in Tunnel and Viaduct	58
16	CMSG-9A	Check for Derailment condition for Viaduct section with sharpest curve and max. Cant – Derailed Condition (R136/140.5m, CANT 110mm) (Outward)	59
17	CMSG-9B	Check for Derailment condition for Viaduct section with sharpest curve and max. Cant - Derailed Condition (R136/140.5m, CANT 110mm) (Inward)	60
18	CMSG-10A	Check for Derailment condition for Tunnel section with sharpest curve and max.cant-derailed condition (r200m, cant 120mm) (Outward)	61
19	CMSG-10B	Check for Derailment condition for Tunnel section with sharpest curve and max.cant-derailed condition (r200m, cant 120mm) (Inward)	
20	CMSG-11	Structural Clearance Platform Screen Door for Elevated Stations	63
21	CMSG- 11(TNL)	Structural Clearance Platform Screen Door for Underground Stations	64

amined and found in order

Pradeep Kn. Mishra: 0000PRW000-OGC1-ENGERT-00001

File No. 3480306)

Sensitive of the Computer No. 3480306)

195

PREAMBLE

The Schedule of Dimensions (SOD) has been prepared for the Chennai Metro Rail project-Phase 2 having Standard Gauge Track(1435mm), with OHE and Front evacuation.

This SOD has been prepared based on the following guiding factors:

- The SOD has been developed assuming certain coach dimensions and design characteristics as well as track and coach maintenance tolerance. Whenever, new Rolling Stock is introduced the track and coach tolerance for maintenance should be laid down. The suitability of Rolling Stock for operation with these maintenance tolerances should be established and sanction shall be obtained from the competent authority before operation of the Rolling Stock commences.
- The Kinematic Envelope has been developed for 2900mm wide and 3900 mm to 4048 mm high Rolling Stock and the max height of Kinematic Envelope is defined as 4200 mm.
- The clearances are based on the assumption that windows are sealed, and doors are closed 3. during movement/operation of Rolling Stock.
- 4. Track and Rolling Stock shall be maintained to the tolerances that were considered for the calculation of the kinematic envelope.
- The Structure Gauge indicated in SOD shall not be violated under any circumstances except for platform coping, platform screen doors/gates, hand railing in back of house of platform edge, track access gates. The Kinematic Envelope of Rolling Stock should not infringe under any circumstance. Any infringement to SOD should be condoned by Railway Board.
- The vehicle Kinematic Envelope has been calculated assuming a cross wind speed of 70 Kmph for the platform areas of At-Grade and, Elevated stations. At all other At-Grade and Elevated locations (e.g. outside of stations), the Kinematic Envelope was calculated assuming a cross wind speed of 100 Kmph.
- At all underground sections (including stations) the Kinematic Envelope was calculated assuming 7. a cross wind speed of 0 Kmph.
- The Kinematic Envelope has been developed taking into account all Track defects and Rolling 8. Stock defects within the tolerances.
- 9. The speed of trains at platform on Elevated or At Grade Station shall be restricted to 40 Kmph when wind speed is more than 70 KMPH but less than 90 KMPH. Metro operations shall cease when the wind speed reaches 90 KMPH or more. Continuous recording of wind speed shall be done at critical locations defined by the Metro Administration.
- The Maximum Design Speed is 90 Kmph, however, the Operating Speed shall be limited to 80 Kmph (Except for stations where the Operating Speed is 55 kmph). The Operating speed in depots shall be 25 Kmph. The maximum speed potential on diverging lines at turnouts having:
 - (i) Weldable CMS crossing (1 in 9) and thick web switch with 300 m radius of lead curve rail shall be 45Kmph.

amined and found in order

adelp Kor. Michra 1000PRW000-OGC1-ENGERT-00001

ASHOK KUMAR, IRSE

METRO RAIL LIMITEL

- (ii) Weldable CMS crossing (1 in 9) and thick web switch with 190 m radius of lead curve rail shall be 35Kmph.
- (iii) Weldable CMS crossing (1 in 7) and thick web switch with 190 m radius of lead curve rail shall be 35Kmph.
- (iv) Weldable CMS crossing (1 in 7) and thick web switch with 140 m radius of lead curve rail shall be 25Kmph.
- 11. No work/workmen/equipment is allowed between vehicle and Structure gauge during operation of trains.
- 12. The Fitness of OHE Installation must meet the requirements of the Rolling Stock at its Design Speed. Electrical Clearances should be measured from the Kinematic Envelope drawn at Design speed of Rolling Stock.
- 13. The train operation will be stopped in affected section by Central Control if any one of the Train in UP or DN direction derails. The operation will remain suspended till the clearance given by Accident Site Manager from the site by exchange of private number with Central Control.
- The clearance between S&T gear and Structure Gauge should always be kept not less than 25 mm.
- 15. The front-end evacuation comprises of an on-train detrainment door which deploys a ramp to the 4 foot zone of the track. The minimum width of the ramp is 700mm and the door has a minimum headroom of 1900mm. The minimum clear width of the pathway (within the 4 foot zone) is 610mm.
- 16. The Regional wind speed as per IS 875 is 50 m/sec and the same was considered for CMRL Phase 2 Project OHE Design.

Examined and found in order

rodicto/gotto/folia

ADE/U.T./CIVIL का का पाठ एंठ (रेश मंत्रासम्) LD.S.O. (Ministry of Reliways) मानक मगर, सर्वापक-226011 Manak Nagar, Lucknow-11

Page 17

S ASHOR KUMAR (IPGE Cree! General Abrages (Thinks & Elevation) CHENNAL METRO RAIL LIMITED

14 of 117.

P2C0000PRW000-0GC1-ENGERT-00001

CHENNAI METRO RAIL LIMITED SCHEDULE OF DIMENSIONS STANDARD GAUGE (1435mm)

(For 2900 wide stock)

INTRODUCTION

The dimension given in this Schedule of Dimensions are to be observed in all works on 1435mm, Standard Gauge, and 2900 mm wide Rolling Stock, unless prior sanction has been obtained from the Railway Board through the Commissioner of Metro Railway safety to execute works which infringe this Schedule of Dimensions.

This Schedule of Dimensions is applicable to Under Ground, Elevated and At-Grade sections of Chennai Metro Rail Limited Project-Phase 2 which shall be with 25 kV AC Traction system and Over Head current collection. The Rolling Stock shall be 2900 mm wide with sealed windows and doors closed while in motion.

The Under Ground system may be with a Circular Tunnel or Rectangular Box or of any other suitable shape while Elevated system may be with suitable Over Ground Structures such as Viaducts. Both, Under Ground and Elevated systems shall have suitably designed Ballastless track. For depot, the track may be ballastless.

The schedule of Dimensions (SOD) has been divided into five chapters as under:

Examined and found in order

ত্তাব্যু পুত্ৰত / ব্যুবজন প্ৰতিক ADE/U.T./CIVIL হাত হাত ব্যুত বৃত্তি (ইল পঁলালাব) R.D.S.O. (Ministry of Railhamys) মূলক দাব্য লাক্ষান-226011 Manak Nagar, Lucknow-11

P2C0000PRW000-0GC1-ENGERT-00001

S. ASHOK KUMAR, IRSE Chlef Gereral Mayage (Tracks & Elevaled) CHENNAI METRO BAR, LIMITI METRO S. METRO S.

Page 8

10

CHAPTER - 1

1.1 SPACING OF TRACKS

Minimum distance, centre to centre of tracks without any structure between tracks for tangent 1.1.1 (straight) track for:

(a) Under Ground Sections

: 3600 mm

(b) Elevated Sections

: 3650 mm

(c) At-Grade Sections

: 3650 mm

Note: See Appendix-1 for minimum track centres on curves.

1.2 **CURVES**

Minimum radius of curves(horizontal) 1.2.1

(a) On main running lines

i) Under Ground Sections

ii) Elevated and At-Grade Sections :120 m

(b) Depot and other non-passenger Lines

:100 m

(c) At passenger platforms

:1000 m

Minimum Transition length (horizontal)

(a) On main running lines

i) Under Ground Sections

ii) Elevated and At-Grade Sections: 15 m

iii) The Minimum transition length inside Platform

Minimum length of alignment elements(horizontal)

The Minimum length of alignment elements (circular curves and straights) between two transition curves should be 20 m.

1.2.4 Check Rail/Restraining Rail:

- (a) Check rail/Restraining Rail shall be provided on curves on main line where radius is 190 m or less. Check rail/Restraining Rail shall not be mandatory for curves in depots, yards and nonpassenger lines where speed is less than 25Kmph.
- (b) The clearance between check/restraining rail and running rail shall be suitably decided by metro depending upon study of track vehicle interaction.

Minimum radius of vertical curve: 1500 m

Minimum length of vertical curve: 20 m

(To keep vertical acceleration in range of 0.3 to 0.45 m/s²)

METRO RAIL LIMITED

ined and found in order deep Kn. Michra P2C0000PRW000-0GC1-ENGERT-00001

ile No. 2024/Rrop (EMRL/SoD/PH-II/30/98 (Computer No. 3480306)

1.2.5 Cant and Cant Deficiency (suggested values)

Criteria	SG (1435 mm)
Maximum Cant Gradient	1 in 440
Maximum Cant on curves	110 mm (Desirable)
Maximum Cant on curves	125 mm (Exceptional)
Maximum Cant Deficiency	85 mm (Desirable)
Maximum Cant Deficiency	100 mm (Exceptional)
Desirable rate of change of Cant	40 mm/ sec
Desirable rate of change of Cant deficiency	40 mm/ sec
Maximum Lateral acceleration	0.55 m/sec ²

1.3 **GRADIENTS**

The maximum grade (compensated) shall be 4%.

Note- (i) There will be no change of gradient in transition portion of curves.

(ii) The gradient will be compensated for curvature at the rate of 0.04% per degree of curve.

1.4 **BUILDINGS AND STRUCTURES**

Minimum horizontal distance from centre of track to any structure (except a passenger platform) for heights above rail level on level / constant grade tangent track shall be as under:

(a) Under Ground Sections

(i) Circular tunnels

S.N.	Height from rail level	Horizontal distance from C.L. of track
(i)	Rail level to 65mm	Up to 1465 mm
(ii)	65 mm to 200 mm	1465 mm increasing to 1585 mm
(iii)	200 mm to 305 mm	1585 mm
(iv)	305 mm to 940 mm	1585 mm increasing to 1670 mm
(v)	940 mm to 1095 mm	1670 mm increasing to 1675 mm
(vi)	1095 mm to 3305 mm	1675 mm increasing to 1740 mm
(vii)	3305 mm to 3965 mm	1740 mm decreasing to 1250 mm
(viii)	3965 mm to 4775 mm	1250 mm
(ix)	4775 mm to 4920 mm	1250 mm decreasing to zero along an arc of circle of radius of 2900

Also refer to Drawing No. CMSG-2(TNL)

Senerated, from eclipice by AVINASH, JD/PROJECT(A), JD/PROJECT, Project Directorate on 13/05/2025 10:41 am

Prodeep Kn. Michora '2C0000PRW000-OGC1-ENGERT-00001

(ii) Rectangular Box Tunnels

S.N.	Height from rail level	Horizontal distance from C.L. of track
(i)	Rail Level to 65 mm	Up to 1465 mm
(ii)	65 mm to 200 mm	1465 mm increasing to 1585 mm
(iii)	200 mm to 305 mm	1585 mm
(iv)	305 mm to 940 mm	1585 mm increasing to 1670 mm
(v)	940 mm to 1095 mm	1670 mm increasing to 1675 mm
(vi)	1095 mm to 3305 mm	1675 mm increasing to 1740 mm
(vii)	3305 mm to 3965 mm	1740 mm decreasing to 1250 mm
(viii)	3965 mm to 4838 mm	1250 mm

Also refer to Drawing No. CMSG-2(TNL)

(b) Elevated and At-Grade Sections

S.N.	Height from rail level	Horizontal distance from C.L. of track
(i)	Rail Level to 65 mm	Up to 1465 mm
(ii)	65 mm to 200 mm	1465 mm increasing to 1640 mm
(iii)	200 mm to 305 mm	1640 mm
(iv)	305 mm to 930 mm	1640 mm increasing to 1735 mm
(v)	930 mm to 1095 mm	1735 mm increasing to 1740 mm
(vi)	1095 mm to 3310 mm	1740 mm increasing to 1825 mm
(vii)	3310 mm to 3775 mm	1825 mm decreasing to 1546 mm
(viii)	3775 mm to 6250 mm	1546 mm

Also refer to Drawing No. CMSG-2

Notes for (a) and (b) above:

- i) Extra allowance shall be provided for curves as laid down at para 1.7
- ii) The term 'structure' covers any item including light ones like ladders, isolated posts, cable etc., erected alongside the track.
- iii) Minimum lateral clearance for OHE masts for tangent track at-grade and elevated station shall be 2150mm from centre line of nearest track.
- iv) Minimum lateral clearance for OHE masts for tangent track at depot shall be 1950mm from centre line of nearest track.
- v) For passenger platform refer to para 2.2.1 to 2.2.3 of chapter 2.
- Minimum vertical clearance from rail level to bottom of following structures 1.4.2
 - i) Light overhead structures such as Foot over bridges on Open: 5750 mm
 - ii) Light overhead structures such as Foot over bridges on Depot: 5820 mm
 - iii) Heavy overhead structures, such as Road over Bridges & Flyovers: 5750 mm

13

Notes:

amined and found in order

Leep Kn. Mistra DOOOPRWOOD-OGC1-ENGERT-00001

SoD/PH-II/30/98 (Computer No. 3480306)

wiby AVINASH, JD/PROJECT(A), JD/PROJECT, Project Directorate on 13/05/2025 10:41 am

- In areas where 25kv A.C traction is used, if any turnout or crossover is located under a heavy overhead structure or within 40m from its nearest face, irrespective of the position of the level crossing gate, the minimum overhead structure shall be 5750mm. In case the turnout is beyond 40m; but the level crossing gate is within 520m from the nearest face of the bridge, the height of such overhead structure shall be 5750mm.
- 2. The height mentioned against items i,ii,iii above shall be measured from the higher or super-elevated rail.

1.5 KINEMATIC ENVELOPE

The maximum limit of Kinematic Envelope allowed for Rolling Stock (for level or constant grade tangent track is defined in the following drawings:

- i) Drawing No. CMSG-1 for Kinematic Envelope for 90kmph –Through & Semi through Girder Bridges At Grade, Elevated Sections on level (or constant grade) tangent track.
- ii) Drawing No. CMSG-1(TNL) for Kinematic Envelope for 90 kmph-Underground Sections on level (or constant grade) tangent track
- iii) Drawing No CMSG-1A for Kinematic Envelope for 65 kmph At Grade and Elevated Stations on level (or constant grade) tangent track.
- iv) Drawing No. CMSG-1A(TNL) for Kinematic Envelope for 65 kmph Underground Stations on level (or constant grade) tangent track.

1.6 STRUCTURE GAUGE

1.6.1 **Under Ground Sections**

The Structure Gauge (Fixed Structure Line) has been arrived at by allowing a minimum clearance of 100 mm to the derived Kinematic Envelope and minimum electrical clearance of 270mm from 25 kV live parts conforming to the stipulation in chapter - 4 of this SOD.

Refer to Drawing No. CMSG-2(TNL) for Structure Gauge for Outside station on level or constant grade tangent track.

Note:

Extra allowance shall be provided for curves as laid down at para 1.7.

1.6.2 Elevated Sections

The Structure Gauge (Fixed Structure Line) has been arrived at by allowing minimum clearance of 150 mm to the derived Kinematic Envelope and minimum electrical clearance of 320 mm from 25 kV live parts conforming to the stipulations in chapter - 4 of this SOD.

Refer to Drawing No. CMSG-2, for Structure Gauge for outside stations on level or constant grade tangent track.

Note:

deep Kon Michra :0000PRW000-OGC1-ENGERT-00001

14

Extra allowance shall be provided for curves as laid down at para 1.7

At-Grade Sections

The Structure Gauge (Fixed Structure Line) has been arrived at by allowing minimum clearance of 150 mm to the derived Kinematic Envelope and minimum electrical clearance of 320mm from 25kV live parts, conforming to stipulations in chapter 4 of this SOD.

Refer to Drawing No. CMSG-2 for Structure Gauge for outside stations on level or constant grade tangent track.

Note:

Extra allowance shall be provided for curves as laid down in para 1.7

1.7 EXTRA CLEARANCE ON CURVES

Following are the extra allowances considered for curves.

Abbreviations used in para 1.7

C is the distance between centres of bogies in metres

C1 is the car (Vehicle) length in metres

R is the radius of curve in metres

Ca is the Cant applied in mm

h is the height from rail level in mm and

g is the distance between centres of rails in mm

1.7.1 Inside of Curve

(A) Curvature effect

- (a) Mid throw at the centre of the vehicle = V (in mm) = 125xC²/R
- (b) Allowance due to gauge widening on curves

For values of items (i) and (ii) above, refer to Appendix-2A

Note:

Lateral shift of 26mm due to nosing is included in Kinematic Envelope for tangent track (and as a result, included in Structure Gauge also) shall be subtracted from the total extra allowance worked out as at para 1.7.1(A)-i and ii above for inside of a curve in case the value of mid throw (V) is equal to or greater than 26mm. In case the value of mid throw (V) is less than 26mm, the curvature effect shall be due to widening of the gauge only. (The Mid throw minus 26mm shall be taken as zero). Refer to Appendix-2.

(B) Allowance for super elevation

(a) Under Ground (Box Structures), Elevated and At-Grade Sections

The lean 'L' due to Cant at any point at height 'h' above rail level is given by:

L= Ca x h/g(all in mm)

Examined and found in order

deep Kon. Mishora DPRW000-OGC1-ENGERT-00001

15

For values of Structure Gauge (E1) for inside of a curve with cant effect only, (as shown in Drawing No. CMSG-4) refer to:

- (i) Appendix -3 (TNL) for Under Ground Sections
- (ii) Appendix-3 for At-Grade and Elevated Sections
- (b) Circular Tunnels

In the case of Circular Tunnel, the cant is provided by raising the outer rail and suitably shifting the centre of the Circular Tunnel towards inside of curve and upwards. This has same effect as assuming rotation of the Circular Tunnel about midpoint of top of inner rail resulting in shift of Tunnel centre laterally towards inside of curve and also vertically upwards.

The Rigid OCS (if applicable) shall also be rotated with the tunnel so as to be along the centre line of canted track.

For values of horizontal and vertical shifts of centre of Circular Tunnel for different values of cant, refer to Appendix-4 and Drawing No. CMSG-3.

(C) Allowance for vertical curve (vertical throw)

Vertical throw V1 and V2 (in mm) for vertical curve shall be calculated as under:

V1 (with vertical centre in sag or vehicle end on summit) = 125 x C2/R

V2 (with vehicle centre on summit or vehicle end in sag) = 125 x C1²/R)-(125xC²/R)

Values of vertical throw due to vertical curves of different radii are given in Drawing No. CMSG5

1.7.2 OUTSIDE OF CURVE

(A) Curvature effect

i) End throw at the end of vehicle = Vo (in mm)

 $= (125 \times C1^2/R) - (125 \times C^2/R)$

- ii) Allowance due to gauge widening on curves.
- iii) Additional nosing due to gauge widening on curves.

The values of items (i) and (iii) are shown in Appendix -2B.

(B) Allowance for super elevation.

(a) Under Ground (Box Structures), Elevated and At-Grade Sections

The lean 'L' due to Cant at any point at height 'h' above rail level is given by:

 $L = (-) Ca \times h/g (all in mm)$

-ve sign indicates relief due to cant or reduction in clearance required.

Note:

Full relief for lean due to cant (Ca) is to be taken into account only for calculation of track spacing without any structure between tracks. In case there is a structure adjacent to track, relief for lean is to be taken into account only if the cant provided is greater than 50mm and shall be limited to a value = $(Ca-50) \times h/g$.

Examined and found in order

Bradeep Kon. Mistera 0000PRW000-OGC1-ENGERT-00001

Page

Values of Structure Gauge (F1) on outside of curve with cant effect only (as shown in Drawing No. CMSG-4), refer to:

- i) Appendix 3 (TNL) for Under Ground Sections (Rectangular Box)
- ii) Appendix 3 for Elevated and At-Grade Sections

(b) Circular Tunnels

In the case of Circular Tunnel, the cant is provided by raising the outer rail and suitably shifting the centre of the Circular Tunnel towards inside of curve and upwards. This has same effect as assuming rotation of the Circular Tunnel about mid point of top of inner rail resulting in shift of Tunnel centre laterally towards inside of curve and also vertically upwards.

The Rigid OCS (if applicable) shall also be rotated with the tunnel so as to be along the centre line of canted track.

For the values of horizontal and vertical shifts of centre of Circular Tunnel for different values of cant, refer to Appendix-4 and Drawing No. CMSG-3.

(C) Allowance for vertical curve (vertical throw)

The provision at para 1.7.1 (C) above shall be applicable in this case also.

1.8 MINIMUM TRACK SPACING ON CURVES

Under Ground, Elevated and At-Grade Sections

The worst case will be when the end of a bogie carriage on the inner track is opposite to the centre of a similar carriage on the outer track.

1.8.1 Without any structure between tracks

The minimum track spacing on curves without any structure between tracks shall be the sum of the following:

- a) (E+F),
- b) T₁(Extra lateral clearance due to curvature on inside of curve),
- c) T₂(Extra lateral clearance due to curvature on outside of curve),
- d) Minimum clearance between adjacent Kinematic Envelope stipulated is as under:
 - i) 300 mm for Under-Ground Sections
 - ii) 300 mm for Elevated and At-Grade Sections.

Where,

Fradelp Kn. Michora

एक्सैक्ट्रं / फुटीक / स्विच्य ADE/U.T./CIVIL क्रक का फुट एंक (रेस नंजराय) LD.8.O. (Ministry of Rallways) मुनक मृत्यू स्वाच्य-226011 Manak Nager, Lucknow-11 'E' is the distance from vertical axis of centre line of canted track to canted Kinematic Envelope on inside of curve at a height 'h' (from rail level) for a given cant (Drawing No. CMSG-4A) and,

'F' is the distance from vertical axis of centre line of canted track to canted Kinematic Envelope on outside of curve at a height 'h' (from rail level) for a given cant (Drawing No. CMSG-4A).

P2C0000PRW000-0GC1-ENGERT-00001

(M

Page | S ASHOK KUMAR IRSE | Chef Compai Manure | Chemas & Bevaled | Chemas & Bevaled | Chemas METRO Rail, LIMITED | MITSO'S Anno Salar, Nancacana Chemas & DOO'16

22 of 117.

17

Notes:

- The value of 'F', calculated from the formula at Drawing No. CMSG-4A includes full relief due to cant.
- ii) The sum of 'E' and 'F' for same height (which are with cant effect only), shall be the maximum of values calculated for various heights from rail level,

For values of E, F, T₁ and T₂, refer to the Appendices as shown below:

	SECTIONS	For E & F	For T ₁ &T ₂
i)	Under Ground	3A (TNL)	2A & 2B
ii)	Elevated and At-Grade	3A	2A & 2B

1.8.2 With a structure between adjacent tracks

The minimum track spacing on curves with a structure between tracks shall be the sum of the following:

- a) (E₁+T₁) Minimum clearance to the structure from centre line of track on inside of curve (for outer track),
- b) (F₁+T₂) Minimum clearance to the structure from centre line of track on outside of curve (for inner track),
- c) Width of structure between adjacent tracks (measured across the tracks). Where,

E1 is the horizontal distance from vertical axis of centre line of track to canted Structure Gauge on inside of curve for a given cant (Drawing No. CMSG-4),

F₁ is the horizontal distance from vertical axis of centre line of track to canted Structure Gauge on outside of curve for a given cant (Drawing No. CMSG-4),

T₁ is extra lateral clearance due to curvature on inside of curve and

T₂ is extra lateral clearance due to curvature on outside of curve

Notes:

- The values of 'E₁' and 'F₁' for a given cant Ca, shall each be the maximum of values at different heights of structure from rail level. In case the cant provided is greater than 50 mm on inner track, the value of F1 shall be for the cant of (Ca-50) mm. In case the cant provided is 50 mm or less on inner track, the value of F1 shall be for ZERO cant.
- ii) Minimum track spacing, so worked out with a structure between the adjacent tracks shall not be less than that calculated as per para 1.8.1 for tracks without any structure between adjacent tracks.

letry of Rail

Examined and found in order

For values of E1, F1, T1 and T2, refer to the Appendices as shown below:

P2C0000PRW000-0GC1-ENGERT-00001

Page | 16 ASHOK KUMAR, 1856 SETRO RAE LIMITED

	SECTIONS	For E ₁ & F ₁	For T ₁ &T ₂
i)	Under Ground	3 (TNL)	2A & 2B
ii)	Elevated and At-Grade	3	2A & 2B

1.9 DERAILMENT GUARD

(a) Derailment Guard shall be provided on on outside of running rail on viaduct & At grade section and inside of running rail in tunnel. In tunnel, the derailment guard should preferably be provided inside the track so that it permits less sway of coach towards tunnel wall in case of derailment.

Note:

Location for providing Derailment Guard in single track tunnel:

- 1. Entry of tunnel 200 m from tunnel portal outside the tunnel to 50 m inside the tunnel.
- 2. Exit of tunnel 50 m from inside of tunnel portal to 200 m outside of tunnel
- In curved track having radius 500m or less including transition portion but excluding location where check rail is provided.
- 4. Location of all-important installations e.g. Location of any substation or hazardous structure inside the tunnel, etc. damage to which in the assessment of the metro rail administration can result into serious loss of life or / and infrastructure as a result of derailment in tunnel.

The above is subject to the condition that metro railway shall carry out of the risk assessment analysis for derailment in the tunnel and ensure that the maintenance practices in the maintenance manual as per the risk assessment mitigation plan. (For Risk Analysis kindly refer Drawing No: CMSG-9A, CMSG-9B, CMSG-10A & CMSG-10B).

(b) Lateral Clearance between the running rail and the derailment Guard should be 210 ± 30 mm. It shall not be lower than 25 mm below the top of running rail and should be clear of the rail fastenings to permit installation, replacement and maintenance.

Note:

In case of Double Resilient Base Plate Assembly Fastening System as approved by MOR, the lateral clearance between running rail and the derailment guard shall be 250±20 mm. This fastening system, if used in tunnels having multiple tracks, Metro Administration should ensure that KE for adjacent track is not infringed so long as the wheels of any derailed vehicle are within the main rail and derailment guard and also the KE of derailed rolling stock shall not have any infringement with the structure gauge.

Examined and found in order

ত্ত্তীবর্ত্ত / শুক্তীক / বিশিক্ষ ADE/U,T./CIVIL জ্ঞা প্রক ক্ষক বাক বিশ্ব প্রকাশ LD.B.O. (Ministry of Railways স্থানত পাত সভাসত-228011

Page | 1

S ASHOK KUMAR, is Day! Cover a Mercago (Trucks & Elevated) CHERNAL METRO HAZ. I.

CHAPTER - 2

STATION

2.1 SPACING OF TRACKS AT STATIONS

Minimum spacing of tracks at station on straight and on curve of radius of 1000m and flatter, without any structure between tracks At-Grade, Elevated and Under- Ground Stations-3900 mm.

2.2 PLATFORMS

2.2.1 Horizontal distance from Centre of track to face of passenger platform coping/PSD threshold/ components of fixed glazing for future PSD shall be

Condition	Value
For Elevated, At Grade section,	Minimum yalue: 1515 Mm Maximum value: 1520 mm
For Underground section	Minimum value: 1510 Mm Maximum value: 1515mm

Notes:

- Passenger platforms have PSD's therefore, the closest dimension to the centreline of the track is always the PSD threshold/Platform Coping/ components of fixed glazing for future PSD.
- b) Platform coping faces shall be flared away smoothly (wherever there is no PSD/ components of fixed glazing for future PSD) from the centre line of the track at either end for a distance of 1500 mm beyond passenger area/at Platform end so as to give from centre of track a minimum dimension:

Condition	Value
Elevated, At Grade section,	1590±5
Underground section	1575±5

- c) For additional clearance for platforms on curves, refer to para 2.7
- 2.2.2 Height above rail level for passenger platform:

		Maximum	Minimum
(a)	At-Grade Ballasted	1085 mm	1075 mm
(b)	Elevated/Under Ground	1095 mm	1085 mm

2.2.3

(i)	Minimum horizontal distance of any isolated structure on a passenger platform from the edge of coping except PSD/ components of fixed glazing for future PSD.	2500 mm
(ii)	Minimum horizontal distance of any continuous Structure on a passenger platform from the edge of coping except PSD/ components of fixed glazing for future PSD.	3000 mm

(Refer Appendix – 6 & 6A - Sample egress calculation report for Underground station & Elevated Station)

Notes:

camined and found in order

adeep Kor. Michora OPRWOOD-OGC1-ENGERT-00001

20

S. ASHOK KUMAR, IRSE Chief Countril Manager (Trails & Elevoted) CHENNAI METRO RAZ, LIMITEI METROS, Anna Salai,

cammed and found in order

ile No. 2024/Prof A WRI /SoD/PH-II/30/98 (Computer No. 3480306)

nerated nom cornects) AVINASH, JD/PROJECT(A), JD/PROJECT, Project Directorate on 13/05/2025 10:41 am

- a) The Platform Gates (PG) may be installed at platform as per design of Original Equipment Manufacturer (OEM) of PG but shall have a minimum clearance of 10 mm from Kinematic Envelope.
- b) The structure on the platform is treated as isolated if the length along the platform length is 2000 mm or less. Any structure having a length exceeding 2000 mm is treated as continuous structure.
- c) The clocks/mirrors/CCTV/LED/LCD Screens/PIDS (passenger Information Display System)/ Signages etc. shall not be considered structures and shall be located at a minimum horizontal distance of 1000 mm from platform edge/coping with minimum height of 2500 mm from top of platform.
 - Note: Anything like above, hung from the Roof of Station shall be adequately secured and a safety loop is to be provided for taking care of incidences of failure of hanging arrangement.
- d) For platform structure setting-out dimensions at stations, refer to Drawing No. CMSG-6 and CMSG-7 for Elevated/at grade station and Drawing No. CMSG-6(TNL) and CMSG-7(TNL) for underground station. No fixed structures should infringe the Structure Gauge except for designated railway operational platform gates, hand railing in back-of-house platform edge, Track Access Gates. Such designated railway operational structures should not infringe the Kinematic Envelope under any circumstances.
- 2.2.4 For Structure Gauge at station platform, refer to following drawings:

a) For under Ground Station

CMSG-6(TNL) & CMSG-7(TNL)

b) For At-Grade and Elevated Stations

CMSG-6 & CMSG-7

2.3 TRACK GRADIENT

2.3.1 TRACK GRADIENTS IN PLATFORM

1. Desirable Grade (Recommended)

Maximum Grade

3. Exceptional Grade

: Level : 1 in 1200

: 1 in 400

ADE/U.T./GIVIL कुक क्षेत्र प्राप्त परित्र क्षेत्र प्राप्त परित्र क्षेत्र प्राप्त परित्र क्षेत्र परित्र क्षेत्र परित्र क्षेत्र परित्र परित्र क्षेत्र क

Examined and found in order

Note:

1. There shall be no change of grade within station platform track.

2 Any gradient steeper than 1 in 1200 and up to Exceptional gradient of 1 in 400shall be proposed by Civil Engineering Head and approved by Managing Director in consultation with Head of Safety nominated by Metro Authority.

2.3.2 GRADIENT ON TURNOUTS

Maximum permissible gradient on turnouts

On Ballasted Track
On Ballastless Track

0.25%

3.00%

Notes:

P2C0000PRW000-0GC1-ENGERT-00001

S ASHOK KUMAR, INSE Chief Ceremii Managee (Toucky & Elevated) CHENNAI METRO RAIL LIMITED METROS, Asero Salas, Nationalis Chemies 600005

Page | 19

26 of 117.

K1-00001

(i) There shall be no change of gradient (i.e., vertical curve) on and within 15.0 m (desirable)/3.0m (minimum) length from any turnout on Ballastless track. In case of Ballasted track, there shall be no change of gradient on and within 30 meters of any turnout.

11 10 11-111

- (ii) There shall be no horizontal curve within 15.0 m length (desirable)/3.0m (minimum) from any turnout on Ballastless track and 30 meters from any turnout on Ballasted Track.
- (iii) Turnout shall normally be installed on straight track. In exceptional situations, turnout may take off from curve provided that the radius of lead curve (main line as well as diverging line) is not less than 190 m. The negotiability of rolling stock on such turnout must be certified by rolling stock supplier and confirmed through oscillation trial and a suitable speed restriction should be imposed on main and/or diverging line based on track geometry and other considerations, if required. In case of turnout installed on curved track, the minimum distance for commencement of vertical curve or another horizontal curve shall be 15m for Ballastless track. Turnout shall not be laid on transition curve.
- (iv) The limit of turnout for above purposes shall be taken from Stock Rail Joint (SRJ) to end (i.e. heel) of crossing for Ballastless track. For Ballasted track, it shall be from SRJ to last common sleeper behind end of crossing.
- (v) The maximum permissible gradient on turnout and the location of turnout with respect to vertical/horizontal curves in vicinity shall be ensured by metro that the Rolling Stock is fit to negotiate these gradients.
- (vi) The above stipulations shall also be applicable for turnout to be laid outside station limit, if

2.4 INTERLOCKING AND SIGNAL GEAR

Maximum height above rail level or any part of interlocking or signal gear on either side of centre of track subject to the restrictions embodied in Note below shall be as under:

(a) For Under Ground Stations

From CL of track to 1330 mm

25 mm

From 1330 mm to 1465 mm

25 mm rising to 65 mm

From 1465 mm to 1585 mm

65 mm rising to 200 mm

For Surface and Elevated Stations

From CL of track to 1330 mm

25 mm

From 1330 mm to 1465 mm

25 mm rising to 65 mm

From 1465 mm to 1640 mm

65 mm rising to 200 mm

Note: Except for check rails of ordinary and diamond crossings, or wing rails and point rails of crossings leading to snag dead ends, or such parts of signalling gear as are required to be actuated by the wheels, no gear or track fittings shall project above rail level for a distance of 229 mm outside and 140 mm inside the gauge face of the rails.

22

2.5 Points and Crossings:

27 of 117.

xamined and found in order

Gradelp Kor. Mishora

istry of Rails F-220011 er, Luckne

P2C0000PRW000-0GC1-ENGERT-00001

ASHOK KUMAR, IRSE

METRO FAR LIMITE!

Para	Description	SG (1435mm)
2.5.1	Maximum clearance of check rail opposite nose of crossing	44 mm
2.5.2	Minimum clearance of check rail opposite nose of crossings	41 mm
2.5.3	Minimum clearance between switch rail and stock rail at heel of Switch Rail	52 mm
2.5.4	Maximum clearance of wing rail at nose of crossing	44 mm
2.5.5	Minimum clearance of wing rail at nose of crossings	41 mm
2.5.6	Minimum clearance between toe of open switch and stock rail	160 mm
2.5.7	Minimum radius of curvatures for slip points, turnouts and crossover	190 m

- 2.5.8 On main lines, the turnouts and diamond crossings shall be of the following types or flatter:
 - a) 1 in 9 type turnout

300m/190m radius

1 in 7 type turnout b)

190m radius

- Scissors cross-over of 1 in 9 type consisting of 4 turnouts of 300m/190m radius and 1 diamond c)
- Scissors cross-over of 1 in 7 type consisting of 4 turnouts of 190m radius and 1 diamond d) crossing
- e) 1 in 7 derailing switches/ 1 in 7 type symmetrical split turnout
- 2.5.9 On depot lines, the turnouts and diamond crossings shall be of the following types or flatter:

a) 1 in 7 type turnout 190m radius

b) 1 in 7 type turnout 140m radius

- Scissors cross-over of 1 in 7 type consisting of 4 turnouts of 190m/140m radius and 1 diamond c) crossing
- d) 1 in 7 derailing switches/ 1 in 7 type symmetrical split turnout
- 2.5.10 Diamond crossings not to be flatter than 1 in 4.5

2.5.11

Note:

- a) The above restrictions shall not apply to moveable diamond crossings.
- b) There must be no change of super elevation (of outer rail over inner rail) between points 18 meters outside toe of switch rail and nose of crossings respectively, except in the case

camined and found in order deep Kon. Mishora 100PRW000-OGC1-ENGERT-00001

23

ENNALMETRO RAIL LIMITED

Page | 21

02., Froj., CMISC/30D/PH-II/30/98 (Computer No. 3480306)

AVINASH, JD/PROJECT(A), JD/PROJECT, Project Directorate on 13/05/2025 10:41 am

of special crossing leading to snag dead - ends or under circumstances as provided for in item 2.6 below.

- 2.5.12 Minimum length of tongue rail: 9000 mm for Standard Gauge.
- 2.6 Superelevation and speed at stations on curves with turnouts of contrary and similar flexure.
- 2.6.1 Main Line:

Subject to the permissible run through speed based on the standard of interlocking the equilibrium super elevation calculated for the speed of the fastest train may be reduced by a maximum amount of Cant deficiency without reducing speed on the main line.

- 2.6.2 Turnouts:
 - Curves of contrary flexure The equilibrium super elevation (s) in mm should be = $(G/127)(V^2/R)$ Where G = Dynamic gauge in mm, R = radius of turnout in metres and V is speed on turnout in kmph. The permissible negative super elevation on the turnout (which is also the actual super elevation of the main line) may then be = (Cant deficiency-s) mm.
 - ii) Curves of Similar Flexure

The question of reduction or otherwise of super elevation on the main line must necessarily be determined by the administration concerned. In the case of a reverse curve close behind the crossing of a turnout, the super elevation may be run out at the maximum of 1 mm in 440 mm.

iii) There must be no change of superelevation (of outer rail over inner rail) between points 18 metres outside toe of switch rail and nose of crossings respectively, except in the case of special crossing leading to snag dead - ends

2.7 ADDITIONAL CLEARANCE FOR PLATFORMS ON CURVES

The additional clearance for platforms on curves is to be provided as shown at appendix-5.

Note:

- i) As the minimum radius of horizontal curve for station platform line is 1000 metres, there will be no super elevation and gauge widening at stations on passenger platform lines.
- ii) Platforms located in curve shall be fitted with gap filler/ or suitable arrangement wherever necessary to maintain the Maximum stepping distance (between platform and car body floor) at platform as 75 mm in Horizontal direction and 45 mm in Vertical direction. The gap filler shall be of elastic nature and flexible to allow train contact without any adverse effect on passenger safety and stability of train.

Examined and found in order deep Kor. Mistera.

> Page | 22 ASHOK KUMAR, IRRE METRO BAS. LIMITEIN

P2C0000PRW000-0GC1-ENGERT-00001

CHAPTER - 3

ROLLING STOCK

Passenger Rolling Stock

Note: all dimensions are in mm

S.No.	Description	Specified Value
1	Gauge	1435 (SG)
2	a) Maximum Length of the coach body (including end fairings)	22150
	b) Length of coach over couplers	22600
	c) Width of the Coach Body	2900
	d) Height of the coach body (maximum with pantograph in locked down condition)	4048
3	a) Distance between bogie centres*	14850±250
	b) Length of rigid wheel base for single bogie*	2400±200
	c) Maximum Distance between any two adjacent axles	12900

Note: * The above dimensions a), b) should commensurate to each other as per the design selected by Metro considering the manoeuvrability of the coach and the entire train on sharper curves and maximum gradient to avoid any infringement to the structure gauge.

4	Kinematic Envelope for level tangent track	Drawing No:
	a) Kinematic Envelope for 90kmph –Through & Semi through Girder Bridges At Grade, Elevated Sections on level (or constant grade) tangent track.	CMSG-1
	 b) Kinematic Envelope for 65 kmph – At Grade and Elevated Stations on level (or constant grade) tangent track. 	CMSG-1A
	c) Kinematic Envelope for 90 kmph–Underground Sections on level (or constant grade) tangent track.	CMSG-1(TNL)
	 d) Kinematic Envelope for 65 kmph – Underground Stations on level (or constant grade) tangent track. 	CMSG-1A(TNL)
5	a) Minimum clearance from rail level under fully loaded condition for bogie mounted equipment in worst condition* (*The worst condition means wheels with maximum tread wear and primary springs with maximum deflection) in static condition.	75
	b) Minimum clearance from rail level under fully loaded condition for body mounted equipment in worst condition* (*The worst condition means deflated secondary air spring, wheels with maximum tread wear and primary springs with maximum deflection) in static condition.	102
	c) Minimum clearance from rail level, under dynamic condition of fully loaded vehicle, with maximum tread wear and primary springs with maximum deflection, with the exception of wheels & attachments there to (vide note below #).	50
	Note: # A tyre or an attachment to a wheel or sand pipes or wheel / Track Lubrication Nozzle in line with the wheel may project below the minimum height of 50mm from a distance of 51mm inside to 216mm outside of the gauge face of wheel.	JH
<u>6</u>	Wheel Profile Note: The "Incline of tread" for S1002 has a varying gradient and must therefore be inferred from the coordinates shown in Table C.1 of EN 13715. Alternative profiles [V135 or EPS 32.5] may be adopted, if the RS Contractor's wheel-rail interface study demonstrates significantly better overall wear characteristics.	S1002/h28/e32.5 Reverse slope between 6.7 and 15

Examined and found in order

Pradeep Kor. Michora !C0000PRW000-OGC1-ENGERT-00001

	Wheel	
7	a) Maximum wheel gauge back-to-back distance	1360
is.	b) Minimum wheel gauge back-to-back distance	1358
8	a) Maximum wheel diameter on the tread (Wheel Profile dimensions as per EN 13715 / EN15313. Wheel Diameter value "D" is measured from point D0 on the wheel tread; 70mm from wheel gauge face)	860
	b) Minimum wheel diameter on the tread (Wheel Profile dimensions as per EN 13715 / EN15313. Wheel Diameter value "D" is measured from point D0 on the wheel tread; 70mm from wheel gauge face)	780
9	a) Maximum projection for flange of new wheel (Wheel Profile dimensions as per EN 13715 / EN15313, Flange Height value "h" is measured from point D0 on the wheel tread; 70mm from wheel gauge face)	36
	b) Minimum projection for flange of new wheel (Wheel Profile dimensions as per EN 13715 / EN15313. Flange Height value "h" is measured from point D0 on the wheel tread; 70mm from wheel gauge face)	28
10	a) Maximum thickness of flange of wheel (Wheel Profile dimensions as per EN 13715 / EN15313. Flange Thickness values "e1, e2" are measured 10mm below wheel tread point D0)	32.5
	b) Minimum thickness of flange of wheel. (Wheel Profile dimensions as per EN 13715 / EN15313. Flange Thickness values "e1, e2" are measured 10mm below wheel tread point D0)	22
11	Minimum width of Wheel as per respective wheel profile	135±1
12	a) Maximum height above rail level for floor of any unloaded vehicle	1130
	b) Minimum height above rail level for floor of fully loaded normal vehicle	1100
13	a) Maximum height of centre coupler above rail level for unloaded vehicle	815
	b) Minimum height of centre coupler above rail level for fully loaded vehicle	740

3.2 LOCOMOTIVE AND ENGINEERING SERVICE VEHICLES

Other items of Rolling Stock viz. shunting locomotives, OHE maintenance and inspection cars, emergency re-railing van, track machines etc., used on Chennai Metro System (where these cars should be plying) will conform with the kinematic envelope of the Passenger Electric Multiple Units as detailed in the annexure of KE drawings.

Examined and found in order

ত্তবিত্ত্ত / দুক্টাত / বিশ্ববন ADE/U.T./CIVIL ত্তাত কাত বাত (বৈ পাত্তবন) R.D.S.O. (Ministry of Reliverys) ক্ষমত পৃথ্য, মাজগত-220011

Manak Nagar, Lucknow-11

Page | 24

S. ASHOK KUMAR, IRSE Chlef General Manager (Tracks & Elevated) CHENNAI METRO RAIL LIMITED METRO'S Area Salai, Nancanam, Chennai 600035

26

CHAPTER - 4

OVERHEAD ELECTRIC TRACTION 25 KV/AC 50 CYCLES PER SECOND Note:

- (i) Electrical Clearances are complied as per Table 2 of Electrical Clearances under 'Para 5.1.3 - Clearances between live parts of contact lines and earth' of BS EN 50119:2009. However, These Electrical clearances are minimum and may be increased depending on various parameters e.g. Absolute humidity, the Ambient Temperature range, Air Pressure, Pollution, Relative Air Density, Shape and material for both energised and earth Structures. Metro may consider each case individually as suggested in BS EN
- (ii) Wherever electric traction is in use, special precautions must be taken to maintain following clearances:

4.1 Electrical Clearances for under ground

Minimum height from rail level to the underside of the Wearing Copper / Metal Conductor of Rigid OCS (Overhead Contact System) in Tunnel would be - 4318 mm.

Note:

- a) Location of level crossing from the exit point of the tunnel will take into consideration the OHE height of 4318 mm at the tunnel exit and the permissible contact wire gradient.
- b) In the Depot deck portion, where Rigid OCS is provided and the track is Ballastless, the Electrical clearances laid down at paras 4.1.1 to 4.1.4 shall be applicable.
- c) For location of rigid OCS in circular tunnel with canted track, refer to para 1.7.1(B)-b and 1.7.2(B)-b.
- d) It shall be ensured that environment level inside the tunnel is controlled suitably so that no extra air clearance, over and above the minimum separation prescribed in para 4.1.3 and 4.1.4 on account of pollution, fog etc. is required.

Stagger of Rigid OCS Conductor in Tunnels shall not be more than (IRS Code)

(a)	On Straight	± 200 mm (from IR SOD)
(b)	On Curves	± 300 mm (from IR SOD)

Prescribed minimum clearance between live parts of contact lines and bodies of structures.

Examined and found in order Gradelp Kor. Mistora

Air clearance between bodies of structures and live un-insulated parts of contact lines, feeders and current collectors for 25 KV shall be as per IEC 60913 as under:

	Condition	Minimum clearance between live parts and structures	Absolute minimum dynamic clearance between live parts and structure
a)	Long duration (Static)	270 mm	-

27

P2C0000PRW000-0GC1-ENGERT-00001

METRO HALL LIMITED

b)	Short Duration (Dynamic)	170 mm	150 mm*	I
				н

*In exceptional cases and considering operating in climatic conditions (Ref: IEC 60913)

Prescribed minimum clearance between live parts of contact lines and bodies of vehicles

	Condition	Clearance (mm)
a)	Long duration (Static)	290 mm
b)	Short Duration (Dynamic)	190 mm

4.1.4 Maximum width of pantograph - under dynamic condition: (indicative)

The Kinematic Envelope for the underground system with Ballast less track is shown in Drawing No. CMSG-1(TNL). The pantograph adopted should be such that its actual half KE width does not exceed 820 mm and 980 mm at the top and bottom respectively in pantograph raised condition for a contact wire height of 4318 mm to fulfil electrical clearances as per item 4.1.3.

4.2 ELECTRICAL CLEARANCES FOR AT-GRADE AND ELEVATED SECTIONS

Minimum vertical distance between any live bare conductor (overhead equipment) and any earthed structure or other bodies (over bridges, signal gantries etc.)

	Condition	For Flexible OHE
a)	Long duration (Static)	320 mm
b)	Short Duration (Dynamic)	270 mm

Note: A minimum vertical distance of 340 mm shall normally be provided between rolling stock and contact wire to allow for a 20 mm temporary raising of the tracks during maintenance. Wherever the allowance required for track maintenance exceeds 20 mm, the vertical distance between rolling stock and contact wire shall correspondingly be increased.

4.2.2 Minimum lateral distance between bare live conductor (overhead equipment) or any earthed structure or other bodies (over bridges, signal gantries etc.)

	Condition	For Flexible OHE	
a)	Long duration (Static)	320 mm	
b)	Short Duration (Dynamic)	220 mm	

4.2.3 Height of contact wire:

Minimum height from rail level to the underside of live Conductor wire.

Examined and found in orde

a)	Under bridges	4408 mm
b)	In the open (Elevated & At grade sections)	5000 mm
c)	Minimum Height of contact wire at Depot	5500 mm

P2C0000PRW000-0GC1-ENGERT-00001

ASHOK KUMAR, IRSE

Page | 26 METRO RAIL LIMITED

xamined and found in order

In running and carriage sheds wherever staff are d) 5200 mm expected to work on the roof of rolling stock

Note:

- (1) On curves, all vertical distances specified in items 4.2.3 above, shall be measured above level of the inner rail, increased by half the super elevation.
- (2) Minimum Contact wire height from Rail level to underside of Conductor Wire.
 - (i) Height of the locomotive (with Panto locked position): 4048 mm
 - (ii) Minimum Static clearances from 25kV live conductor :320 mm
 - (iii) Allowance for OHE erection Maintenance: 20 mm
 - Allowance for track maintenance: 20 mm (Ballastless Track) (iv)
 - (v) Minimum height of contact wire (Total): 4408 mm
- Maximum variation of the live conductor wire on either side of the centre line of the track under 4.2.4 static conditions:

i) On Straight ± 300 mm ii) On Curves.....

4.2.5 Maximum width of pantograph collector:

> The Kinematic Envelope with the size of Pantograph adopted shall be within the Kinematic Envelope shown at Drawing No: CMSG-1.

4.3 (i) The vertical clearance from Overhead line to power line crossing of Railway Tracks:

No	Voltage		ice from Rail level	Minimum Clearance
	Voltage	Existing Power Line Crossing For Non- Electrified Territory	New Power Line Crossing or Crossing Planned For Alteration	between Highest Traction Conductor and lowest Transmission Line Crossing Conductor
(1)	(2)	(3)	(4)	(5)
(a)	Upto and including 11kV	N N	ormally by Undergro	ound Cable
(b)	Above 11kV & upto 33kV	10860mm	14660mm	2440mm
(c)	Above 33kV & upto 66kV	11160mm	14960mm	2440mm

P2C0000PRW000-0GC1-ENGERT-00001

METRO RAIL LIMITED

29.

(d)	Above 66kV	/ &	upto	11760mm	15560mm	3050mm
(e)	Above 132k 220kV	V &	upto	12660mm	16460mm	4580mm
(f)	Above 220k 400kV	V &	upto	14460mm	18260mm	5490mm
(g)	Above 400k	V &	upto	15360mm	19160mm	7940mm
(h)	Above 500k' 800kV	V &	upto	18060mm	21860mm	7940mm

THE RESERVE OF THE PARTY.

Note:

- (i) All height/clearances are in mm and under maximum sag conditions.
- (ii) If the crossing is provided with a guarding, a minimum clearance of 2000mm shall be maintained between bottom of the guard wire and highest traction conductor.

Examined and found in order

Power line crossing in yards & stations area shall be avoided.

For any electrification work of existing track or construction of new track /gauge conversion with electrification, existing power line crossings can continue, if dimensions are as per Column (5) above, even if dimensions of Column (3) are not satisfied i.e., for electrification works Column (3) is not applicable.

4.3 (ii) Minimum clearance between any conductor not adequately insulated and any railway structure under most adverse conditions

SI. No	Voltage	Minimum Clearance
(1)	(2)	(3)
(a)	Upto and including 650 volts	2500mm
(b)	Above 650 volts and upto & including 33 kV	3700mm
(c)	Above 33 kV and upto & including 66 kV	4000mm
(d)	Above 66 kV and upto & including 132 kV	4600mm
(e)	Above 132 kV and upto & including 165 kV	4900mm
(f)	Above 165 kV and upto & including 220 kV	5500mm
(g)	Above 220 kV and upto & including 400 kV	7300mm
(h)	Above 400 kV and upto & including 500 kV	8200mm
(i)	Above 500 kV and upto & including 800 kV	10900mm

4.3 (iii) Minimum height above rail level for telegraph, telephone

P2C0000PRW000-0GC1-ENGERT-00001

Page | 28

6100mm

and other such low-tension wires crossing a railway

4.3 (iv) Minimum Horizontal Distance of Structures:

The minimum horizontal distance measured at right- angle to, and from the centre of nearest track to any part of the structure above ground level, carrying electrical conductor crossing a railway line shall

(i) For new structure

: (H+6)m

(ii)For existing rigid well founded post/structures: 3m, or 1.5m away from the toe of embankment/top

of cutting, whichever is more

Where, 'H' is the height of post/structure from nearest ground level

Note:

(1) Rigid well founded post/structure: Any post/structure which is so constructed or guyed as to remain in a vertical position or failing this to continue to provide the minimum horizontal clearances of 2.135m from the centre of nearest track, with one or all of the conductors broken or with its conductors attached, when subjected to maximum wind pressure, shall be considered to be a "rigid well-founded post/structure".

The existing rigid well founded post/structures, presently at a distance equal to or more than (ii) as given above, but less than (H+2.135) m, shall be inspected by railway's nominated electrical official once in a year jointly with the owner of the post/structure and certify the safety of the structure, keeping appropriate records of inspections.

(2) If the existing post/structure carrying electrical conductors crossing a railway line, is not rigid and well-founded then the minimum horizontal distance, measured at right angles from the centre of nearest track, shall be equal to height of post/structure above ground level plus 2.135m.

Examined and found in order

ADE/U.T./CIVIL

R.D.S.O. (Ministry of Relly मगर, लख **गज-226011** Manak Nagar, Lucknow-11

Page |

ASHOK KUMAR WISE MNALMETRO RAIL LOVIDE

CHAPTER - 5

PLATFORM SCREEN DOOR (PSD)

(As per MoHUA guidelines issued in 2013, planning of Metro system with PSD is mandatory.)

5.1 Setting out Dimensions

S.N.	Particular	2900 mm wide RS
i.	Minimum Platform Screen Door Width (clear opening)	2000 mm
ii.	Minimum Platform Screen Door Height from PF level (Full hight)	2100 mm
iii.	Minimum Platform Screen Gate Height from PF level (Half hight)	1500 mm
iv.	Minimum Platform Screen Door threshold offset from track centreline – straight track (Underground)	1510 mm
٧.	Minimum Platform Screen Door panel offset from track centreline – straight track (underground)	1535 mm Excluding the deflector plate
vi.	Minimum Platform Screen Door threshold offset from track centreline – straight track (Elevated/At Grade)	1515 mm
vii.	Minimum Platform screen door panel offset from Track – centre line – straight track (Elevated/At- Grade)	1540 mm Excluding the deflector plate, drive assembly
viii.	The minimum size of object which can be sensed for retraction of doors (the dimensions given are only indicative, Metro may adopt more sensitive screen door which can sense lesser size as indicated).	19mm dia Rod or 5mmx40mm plate

RS door width of 1400mm, stopping accuracy of +-300mm of signalling considered for PSD door width

Note

- Stopping Accuracy of Metro Train is (+/-) 300 mm or less.
- For curved platforms, additional clearance as per appendix-5 to be considered.
- Platform Gates are considered as designated railway operational structure. Therefore, platform gates may infringe the structure gauge, but does not infringe the kinematic envelope of train in station.
- d) The deflector (if provided) attached to the bottom of the sliding door shall be designed in order not to protrude beyond the door threshold.

Examined and found in order

भगर लखनज-226011 Manak Nagar, Lucknow-11

Page | 30

S. ASHOK KUMAR, IRSE ENNAI METRO PAR LIMITED

P2C0000PRW000-0GC1-ENGERT-00001

APPENDIX-1

PERMISSIBLE SPEED, CANT AND MINIMUM TRACK SPACING ON CURVES UNDERGROUND (TUNNELS), ELEVATED AND AT-GRADE SECTIONS

			MINIMUM DISTANCE BI	JM DISTANCE BETWEEN ADJACENT TRACKS		
RADIUS OF CURVE	CANT	PERMISSIBLE SPEED	BALLASTLESS			
CURVE		SPEED	UNDERGROUND	ELEVATED & AT-GRADE		
metres	mm	· kmph	mm	mm		
>3000		80	3600	3650		
3000	15	80	3600	3650		
2800	15	80	3600	3650		
2400	20	80	3600	3650		
2000	20	. 80	3600	3650		
1600	25	80	3600	3650		
1500	30	80	3600	3650		
1200	35	80	3600	3670		
1000	45	80	3650	3700		
800	55	80	3600	3750		
600	70	80	3650	3750		
500	95	80	3750	3800		
450	115	80 .	3800	3850		
400	120	75	3850	3900		
350	120	70	3850	3900		
300	125	65	- 3900	3950		
200	120	55	4000	4050		
150	110	45	4100	4150		
15ď	0	25	4000	4050		
120	110	40	4200	4250		
120*	0	25	4100	4150		

Notes:

- a) The Track spacing shown in the table above is without any column / structure between two tracks and is with equal cant for both outer and inner tracks.
- b) Track spacing shown in Table above is not applicable to station which should be calculated depending on specific requirement but the spacing should not be less than the spacing stipulated in para 2.1.
- c) Cant provided is limited to Exceptional value of 125mm
- d) Maximum cant deficiency is 100mm
- *The curve with radius 120 and 150 without cant are used in depot/depot connections.
- For in between radius more sharper radius to be adopted to arrive track spacing

Examined and found in order

33

Page | 31

adeep Kor. Mishora RW000-OGC1-ENGERT-00001

ile No. 2034/Pro (GMPL S. D. PU)II/30/98 (Computer No. 3480306) Senerated from eoffice by AVINASH, JD/PROJECT(A), JD/PROJECT, Project Directorate on 13/05/2025 10:41 am

APPENDIX-2A

EXTRA HORIZONTAL SHIFT ON CURVES (CURVATURE EFFECT)

INSIDE OF CURVE

RADIUS	MID THROW (28500/R)	EXTRA GAUGE TOLERANCE ON CURVES	EXTRA NOSING DUE TO EXTRA GAUGE TOLERANCE	EXTRA HORIZONTAL SHIFT ON CURVE	REMARKS
R	(V)	(N)	(G)	(T1)	
100	285.0	26	9.0	268	
120	237.5	26	9.0	221	
150	190.0	26	9.0	173	
175	162.9	26	9.0	146	
190	150.0	26	9.0	133	
200	142.5	26	9.0	126	
250	114.0	26	9.0	97	
300	95.0	26	9.0	78	(G) Extra Gauge
350	81.4	26	9.0	64	Tolerance on
400	71.3	26	9.0	54	Curves sharper
450	63.3	26	9.0	46	than 1000m Radius.
500	57.0	26	5.0	36	. Naulus.
550	51.8	26	5.0	31	9mm for curves
600	47.5	26	5.0	27	with Radius
650	43.8	26	5,0	23	sharper than 500 m radius
700	40.7	26	5.0	20	and
750	38.0	26	5.0	17	
800	35.6	26	5.0	15	5 mm for curves
850	33.5	26	5.0	13	of with Radius
900	31.7	26	5.0	11	of 500 m to less than 1000m
950	30.0	26	5.0	9	man 1000m
1000	28.5	26	0.0	3	
1100	25.9	26	0.0	0	
1200	23.8	26	0.0	0	
1300	21.9	26	0.0	0	
1400	20.4	26	0.0	0	T1 = V-N+G for
1500	19.0	26	0.0	0	V equal to or
1600	17.8	26	0.0	0	Greater than (
1700	16.8	26	0.0	0	N) and T1 = G for V <(N)
1800	15.8	26	0.0	0	101 4 <(14)
1900	15.0	. 26	0.0	0	
2000	14.3	26	0.0	0	
2200	13.0	26	0.0	0	
2400	11.9	26	0.0	0	
2600	11.0	26	0.0	0	
2800	10.2	. 26	0.0	0	
000 OR More	9.50	26	0.0	0	

Examined and found in order

Finder Kin. Michae)OPRW000-0GC1-ENGERT-00001

34

**Ille No. 2121-0F CVN - DYPH-II/30/98 (Computer No. 3480306)

Senerated from ACM (General AVINASH, JD/PROJECT(A), JD/PROJECT, Project Directorate on 13/05/2025 10:41 arr:

S. ASHOK KUMAR, IRSE Chief General Manager (Tracks & Elevated) CHENNAI METRO PAB, LIMITED AFTROS, Anna Salal, Nandanam, Chennal - 800006

Mid Throw (in mm) V=(125XC2)/R =28500/R Where C is the distance between bogie centres = 14.850+0.250=15.100m OR 14.850-0.250= 14.600m

The worst case will be with C= 15.100 m R is the Radius of curve in mtrs Mid Throw (in MM) V=(125xC2) / R = 28500/R For in Between radius more sharper radius to be adopted

Examined and found in order

ADE/U.T./CIVIL

R.D.S.O. (Ministry of Railways) স্মাৰ্ক স্বাদ, স্বাস্ত-226011 Manak Nagar, Lucknow-11

P2C0000PRW000-0GC1-ENGERT-00001

Generated from eOffice by AVINASH, JD/PROJECT(A), JD/PROJECT, Project Directorate on 13/05/2025 10:41 am

Page | 33 S ASHOK KUMAR, IRSE Chief General Manager (Thuse & Elecated) CHENNAI METRO RAIL LIMITED METRO'S Anna Spring Nandanare, Chantian - 600005

File No. 2024/Proj./CMRL/SoD/PH-II/30/98 (Computer No. 3480306)

APPENDIX-2B

EXTRA HORIZONTAL SHIFT ON CURVES (CURVATURE EFFECT)

OUTSIDE OF CURVE

		OUTSIDE O	F CURVE		
RADIUS	END THROW (34683/R)	EXTRÀ GAUGE TOLERANCE ON CURVES	EXTRA NOSING DUE TO EXTRA GAUGE TOLERANCE	EXTRA HORIZONTAL SHIFT ON CURVE	REMARKS
R	(Vo)	(G)	(EN)	(T2)	
100	346.8	9	2.3	358	
120	289.0	9	2.3	300	
150	231.2	9	2.3	242	
175	198.2	9	2.3	209	
190	182.5	9	2.3	194	
200	173.4	9	2.3	185	
250	138.7	9	2.3	150	
300	115.6	9	2.3	127	
350	99.1	9	2.3	110	
400	86.7	9	2.3	98	
450	77.1	9	2.3	88	(G) Extra Gauge
500	69.4	5	1.3	76	Tolerance on Curves sharper than 1000m
550	63.1	5	1.3	69	Radius.
600	57.8	5	1.3	64	500
650	53.4	5	1.3	60	9mm for curves with
700	49.5	5	1.3	56	Radius sharper than 500 m radius and
750	46.2	5	1.3	53	500 m radius and
800	43.4	5	1.3	50	5 mm for curves of
850	40.8	5	1.3	47	with Radius of 500 m to
900	38.5	5	1.3	45	less than 1000m
950	36.5	5	1.3	43	
1000	34.7	0	0.0	35	
1100	31.5	0	0.0	32	
1200	28.9	0 .	0.0	29	
1300	26.7	0	0.0	27	T2 = V0+G+EN
1400	24.8	0	0.0	25	
1500	23.1	0 .	0.0	23	EN=G x 0.251986301
1600	21.7	0	0.0	22	
1700	20.4	0	0.0	20	
1800	19.3	0	0,0	19	
1900	18.3	0.	0.0	18	
2000	17.3	0	0.0	17	
2200	15.8	0	0.0	16	
2400	14.5	0	0.0	14	
2600	13.3	0	0.0	13	
2800	12.4	0	0.0	12	*
3000 OR More	11.6	. 0	0.0	12	
	22.0	0	0.0	12	

Examined and found in order

36

S. ASHOK KUMAR, IRSE Chef General Manager (Tracks & Elevated) CHENNAI METRO PAIL LIMITED METRO'S, Anna Sullai, Nandanaw, Chennai - 50006

End Throw (in mm) V=(125XC12)/R - (125 XC2)/R=34683/R Where C is the distance between bogie centres = 14.850+0.250=15.100m OR 14.850-0.250= 14.600m

The worst case will be with C= 14.6000m C1 is the length of coach in meters =22.150 and R is the radius of curve in meters For in between radius more sharper radius to be adopted.

Examined and found in order

Bradelp Kor. Mistora

एवडीवर्ड्ड / युवटीव / शिविश ADE/U.T./CIVIL व्यक्त व्यक्त प्रति एक पंज्यलय) PLD.S.O. (Ministry of Rathesys) मानक नगर, लखनक-226011 Manak Nagar, Lucknow-11

Page | 35

42 of 117.

P2C0000PRW000-0GC1-ENGERT-00001

Generated from eOffice by AVINASH, JD/PROJECT(A), JD/PROJECT, Project Directorate on 13/05/2025 10.41 am

37

ASHOK KUMAR ING ENNALMETRO RAIL LIMITED TROS 6000 Sale

APPENDIX-3 CANT EFFECT ON STRUCTURE GAUGE - HORIZONTAL AT-GRADE AND ELEVATED REFERENCE: PARA 1.7.2

	above rail lev					h =	305		T	h =	930		PARA 1.7.		3310			h=	3775			ALL h= f	FIQURES	ARE IN M
Distance	licular to plar e from centre e Gauge for	line of tr	ack to	-		ab=	1640			ab =	1735				1825				1546			ab =		
Cant	Angle a Degrees	Sin a	cos a	tan a	Eı	F ₁	н	н	E+	Fı	н	H ₂	E,	Fı	, Hı	H ₂	Eı	F,	Н	H ₂	Eı	Fı	н	H ₂
125	4.748	0.083	0.997	0.083	1660	1609	502	231	1806	1652	1133	846	2093	1545	3512	3210	1853	4000	2052	0000				
120	4,558	0.079	0.997	0.080	1659	1611	494	234	1803	1656	1125	849	2082	1556	3505	3210	1841	1228	3953	3697	2058	1023	6419	6163
115	4,368	0.076	0.997	0.076	1658	1612	487	237	1801	1659	1117	853	2072	1568	3497	3219	1829	7,00	3946	3700	2038	1044	6413	6167
110	4,178	0.073	0.997	0.073	1658	1613	479	240	1798	1663	1109	856	2061	1579	3489	3219	1829	1254	3939	3704	2018	1066	6407	6172
105	3.987	0.070	0.998	0.070	1657	1615	471	243	1795	1666	1101	860	2051	1590	3481	-	-	1267	3933	3707	1997	1087	6401	6176
100	3.797	0.066	0.998	0.066	1657	1616	463	246	1793	1670	1093	863	2040	1602	3481	3228	1805	1280	3926	3711	1977	1108	6395	6180
95	3.607	0.063	0.998	0.063	1656	1618	455	249	1790	1673	1085	867	2030	- 1613	-	-	1793	1293	3919	3714	1957	1129	6389	6184
90	3.417	0.060	0.998	0.060	1655	1019	447	252	1787	1676	1077	870	2019	1624	3466 3458	3236	1780	1305	3912	3718	1936	1150	6382	6188
85	3.227	0.056	0.998	0.056	1655	1620	439	255	1785	1680	1069	873	2019	100000000000000000000000000000000000000	-	3240	1768	1318	3905	3721	1916	1171	6376	6192
80	3.037	0.053	0,999	0.053	1654	1622	431	258	1782	1683	1069	877	1998	1636 1647	3450 3442	3245	1756	1331	3899	3724	1895	1192	6370	6196
75	2.847	0.050	0.999	0.050	1653	1623	424	261	1779	1687	1053	880	1998	-		3249	1744	1344	3892	3728	1875	1213	6363	6199
70	2.657	0.046	0.999	0.046	1652	1624	416	264	1776	1690	1044	884	1987	1658	3434	3253	1732	1357	3885	3731	1855	1234	6357	6203
65	2.467	0.043	0.999	0.043	1652	1625	408	267	1773	1693	1036	887	-	-	3426	3257	1719	1369	3878	3734	1834	1255	6350	6207
60	2.277	0.040	0.999	0.040	1651	1627	400	270	1771	1697	1036	1,55,510	1966	1681	3418	3261	1707	1382	3871	3737	1814	1276	6343	6210
55	2.087	0.036	0.999	0.036	1650	1628	392	273	1768	1700	1020	890	1953	1692	3410	3265	1695	1395	3863	3741	1793	1296	6336	6214
50	1.898	0.033	0.999	0.033	1649	1629	384	276	1765	1700	1020	894	1944	1703	3402	3269	1682	1407	3856	3744	1773	1317	6330	6217
45	1,708	0.030	1,000	0.030	1648	1630	376	278	1762	1703	1012	897	1934	1714	3394	3273	1670	1420	3849	3747	1752	1338	6323	6220
40	1,518	0.026	1,000	0.026	1648	1631	368	281	1759	1710	996	900	1923	1726	3385	3277	1658	1433	3842	3750	1732	1359	6316	6224
35	1,328	0.023	1,000	0.023	1647	1632	360	284	1756	1713	987	904	1912	1737	3377	3280	1645	1445	3835	3753	1711	1380	6309	6227
30	1.138	0.020	1.000	0.020	1646	1634	353	287	1753	1716	979	910	1890		3369	3284	1633	1458	3827	3756	1690	1401	6302	6230
25	0.949	0.017	1,000	0.017	1645	1635	345	290	1750	1719	979	910	1890	1759 1770	3361	3288	1621	1471	3820	3759	1670	1422	6294	6233
20	0.759	0.013	1,000	0.013	1644	1636	337	293	1747	1723	963	917	1869	1770	3352	3292	1608	1483	3813	3761	1649	1442	6287	6236
15	0.569	0.010	1.000	0.010	1643	1637	329	296	1744	1726	955	920	1858	1792	3344	3296	1596	1496	3805	3764	1629	1463	6280	6239
10	0.379	0.007	1,000	0.007	1642	1638	321	299	1741	1729	935	923	1858		3335	3299	1583	1508	3798	3767	1608	1484	6273	6242
5	0.190	0.003	1,000	0.003	1641	1639	313	302	1738	1732	938	923		1803	3327	3303	1571	1521	3790	3770	1587	1505	6265	6245
0	0,000	0.000	1.000	0.000	1640	1640	305	305	1735	1735	7.55		1836	1814	3319	3306	1558	1533	3783	3772	1567	1525	6258	6247
	O FIGURE:	104 31717	1.000	5,000	1040	1090	303	305	1735	1735	930	930	1825	1825	3310	3310	1546	1546	3775	3775	1546	1546	6250	6250

REFER TO FIGURE: CMSG-4 $E_1 = [ab+(h \times \tan \alpha)] \times \cos \alpha$. $E_1 = [ab-(h \times \tan \alpha)] \times \cos \alpha$ $H_1 = (Cat2)^2 + (h/\cos \alpha)^2 + (bh-h \times \tan \alpha) \times \sin \alpha$ $H_2 = (Cat2)^2 + (h/\cos \alpha)^2 + (bh-h \times \tan \alpha) \times \sin \alpha$ Ab = Ab = Distance from centre line of vehicle to Structure gauge for Tangent Track at height 'h' from rail level<math>Ab = Ab = Distance from centre line of canted track to Structure Gauge for Tangent track at height 'h' from rail level<math>Ab = Distance from centre line of canted track to Structure Gauge for Tangent track at height 'h' from rail level<math>Ab = Distance from centre line of canted track to Structure Gauge for Tangent track at height 'h' from rail level<math>Ab = Distance from centre line of canted track to Structure Gauge for Tangent track at height 'h' from rail level<math>Ab = Distance from centre line of canted track to Structure Gauge for Tangent track at height 'h' from rail level<math>Ab = Distance from centre line of canted track to Structure Gauge for Tangent track at height 'h' from rail level<math>Ab = Distance from centre line of canted track to Structure Gauge for Tangent track at height 'h' from rail level<math>Ab = Distance from centre line of canted track to Structure Gauge for Tangent track at height 'h' from rail level<math>Ab = Distance from centre line of canted track to Structure Gauge for Tangent track at height 'h' from rail level<math>Ab = Distance from centre line of canted track to Structure Gauge for Tangent Track at height 'h' from rail level<math>Ab = Distance from centre line of canted track to Structure Gauge for Tangent Track at height 'h' from rail level<math>Ab = Distance from centre line of canted track to Structure Gauge for Tangent Track at height 'h' from rail level<math>Ab = Distance from centre line of canted track to Structure Gauge for Tangent Track at height 'h' from rail level<math>Ab = Distance from centre line of canted track to Structure Gauge for Tangent Track at height 'h' from rail level<math>Ab = Distance from centre line of canted track to Structure Gauge for Tangent Track at height

Examined and found in order

Pradeep Kor. Mistora

Page | 36

43 of 117.

APPENDIX - 3 (TNL)
CANT EFFECT ON STRUCTURE GAUGE-HORIZONTAL UNDER GROUND SECTIONS (RECTANGULAR BOX TUNNELS)

411	ENGI	IDES	IN	MAN	

					CAN	1	, ole a	KUCTUKI	- ONOOL		EFERENCE			2011011	o (recone	W. C.			V.C		ALL FIGU	IRES IN MI	4	
perpendi Distance	cove rail level cular to plane from centre lir Gauge for tar	of track ne of track		→ →			305 1585	¥.		h = ab =					1740			ab=	3965 1250			h= 41		
Cant	Angle a Degrees	Sin a	cos a	tan a	Εı	Fı	Hı	H ₂	E ₁	F۱	Hi	Hz	E,	Fı	Hı	Hz	Er	Fi	Hı	H ₂	Εı	Fı	Н	Hz
125	4.748	0.083	0.997	0.083	1605	1554	498	235	1742	1586	1138	861	2008	1460	3500	3212	1574	917	4117	3910	1646	845	4987	4780
120	4.558	0.079	0.997	0.080	1604	1556	490	238	1739	1590	1130	864	1997 -	1472	3493	3216	1561	931	4112	3913	1631	862	4982	4783
115	4.368	0.076	0.997	0.076	1604	1557	482	241	1737	1594	1122	868	1987	1483	3485	3220	1548	944	4106	3916	1615	878	4977	4786
110	4.178	0.073	0.997	0.073	1603	1559	475	244	1734	1597	1114	871	1976	1495	3478	3224	1536	958	4101	3918	1599	894	4971	4789
105	3.987	0.070	0.998	0.070	1602	1560	467	247	1731	1601	1106	874	1966	1506	3470	3229	1523	971	4095	3921	1583	911	4966	4792
100	3.797	0.066	0.998	0.066	1602	1561	459	249	1729	1604	1099	877	1955	1517	3463	3233	1510	985	4089	3924	1568	927	4960	4795
95	3.607	0.063	0.998	0.063	1601	1563	452	252	1726	1608	1091	881	1944	1529	3455	3236	1497	998	4083	3926	1552	943	4955	4797
90	3.417	0.060	0.998	0.060	1600	1564	444	255	1723	1611	1983	884	1934	1540	3448	3240	1484	1011	4077	3928	1536	959	4949	4800
85	3.227	0.056	0.998	0.056	1600	1565	436	258	1720	1614	1075	887	1923	1551	3440	3244	1471	1025	4072	3931	1520	976	4943	4802
80	3.037	0.053	0.999	0.053	1599	1567	429	261	1717	1618	1067	890	1913	1562	3433	3248	1458	1038	4066	3933	1505	992	4937	4805
75	2.847	0.050	0.999	0.050	1598	1568	421	263	1715	1621	1059	893	1902	1574	3425	3252	1445	1052	4060	3936	1489	1008	4932	4807
70	2.657	0.046	0.999	0.046	1597	1569	413	266	1712	1625	1051	897	1891	1585	3417	3256	1432	1065	4054	3938	1473	1024	4926	4810
65	2.467	0.043	0.999	0.043	1597	1570	405	269	1709	1628	1044	900	1881	1596	3409	3260	1420	1078	4048	3940	1457	1041	4920	4812
60	2.277	0.040	0.999	0.040	1596	1572	398	272	1706	1631	1036	903	1870	1607	3402	3263	1407	1091	4042	3942	1441	1057	4914	4815
55	2.087	0.036	0.999	0.036	1595	1573	390	275	1703	*635	1028	906	1859	1618	3394	3267	1394	1105	4035	3944	1425	1073	4908	4817
50	1.898	0.033	0.999	0.033	1594	1574	382	277	1700	1638	1020	909	1848	1630	3386	3271	1381	1118	4029	3946	1410	1089	4902	4819
45	1.708	0.030	1,000	0.030	1593	1575	375	280	1697	1641	1012	912	1838	1641	3378	3274	1368	1131	4023	3948	1394	1105	4896	4821
40	1.518	0.026	1.000	0.026	1593	1576	367	283	1694	1645	1004	915	1827	1652	3370	3278	1355	1145	4017	3950	1378	1121	4889	4823
35	1.328	0.023	1.000	0.023	1592	1578	359	286	1691	1648	996	919	1816	1663	3362	3281	1342	1158	4010	3952	1362	1138	4883	4825
30	1.138	0.020	1.000	0.020	1591	1579	351	288	1688	1651	988	922	1805	1674	3354	3285	1329	1171	4004	3954	1346	1154	4877	4827
25	0.949	0.017	1.000	0.017	1590	1580	344	291	1685	1654	980	925	1794	1685	3346	3288	1315	1184	3998	3956	1330	1170	4871	4829
20	0.759	0.013	1.000	0.013	1589	1581	336	294	1682	1657	972	928	1784	1696	3338	3292	1302	1197	3991	3958	1314	1186	4864	4831
15	0.569	0.010	1.000	0.010	1588	1582	328	297	1679	1661	964	931	1773	1707	3330	3295	1289	1211	3985	3960	1298	1202	4858	4833
10	0.379	0.007	1.000	0.007	1587	1583	320	299	1676	1664	956	934	1762	1718	3321	3298	1276	1224	3978	3962	1282	1218	4851	4835
5	0.190	0.003	1.000	0.003	1586	1584	313	302	1673	1667	948	937	1751	1729	3313	3302	1263	1237	3972	3963	1266	1234	4845	4836
0	0.000	0.000	1,000	0.000	1585	1585	305	305	1670	1670	940	940	1740	1740	3305	3305	1250	1250	3965	3965	1250	1250	4838	4838

REFER TO FIGURE: CMSG-4A

REFER TO FIGURE: CMSG-4A $E_1 = [ab+(h \times tan \alpha)] \times cos \alpha$: $E_1 = [ab-(h \times tan \alpha)] \times cos \alpha$ $E_1 = [ab+(h \times tan \alpha)] \times cos \alpha$: $E_1 = [ab-(h \times tan \alpha)] \times cos \alpha$ $E_1 = [ab-(h \times tan \alpha)] \times cos \alpha$ $E_1 = [ab-(h \times tan \alpha)] \times cos \alpha$ $E_2 = [ab-(h \times tan \alpha)] \times cos \alpha$ $E_3 = [ab-($

Gradeep Kor. Michora

Page | 37

44 of 117.

APPENDIX - 3A CANT EFFECT ON KINEMATIC FIVE OPE-HORIZONTAL ATTORAGE AND ELEVATED RECTIONS

	nt above endicular					h =	938			h	= 997			h =	1130			h =	2878			h =	3296				4014	-						-		PARA 1.7
Dista	nce from to K.E.	centre	ine of			ah =	1582			ab	= 1584			ah i	1590			ah s	1858				1658				1225			h =	desay.				= 5018	
Cant	Angle 8	Sin a	cos a	tan a	E	F	H	H,	E	F	н	Н	E	F	н.	н,	E	-	Н.	Н,	E	F	н,	н	E	E	н.	Hr	E	F	T.,				1	1
125	4.748	0.083	0.997	0.083	1654	1499	1128	866	1661	1496	1187	925	1678	1491	1320	1057	1891	1414	3068	2793	1925	1379					-		_	-	н,	Hy	E	F	H	н,
20	4.558	0.079	0.997	0,080	1652	1502	1121	869	1658	1500	1180	928	1675	1495	1313	1060	1881	1424	3061	2797	1915	-	3484	3210	1553	-	4164	3961	1619	813	-	4811	1292	462	5136	4990
15	4.368	0,076	0.997	0.076	1649	1506	1113	872	1655	1503	1172	931	1671	1499	1305	1063	1872	1434	3083	2801	1904.	1391	3477	3214	1540	-	4159	3964	1603	829	5008	-	1276	478	5132	4992
10	4.178	0.073	0.997	0.073	1646	1509	1106	875	1652	1507	1165	934	1668	1503	1298	1066	1863	1444	3046	2805	1894	1413	3470	3218	1527	916	4153	3967	1587	846	5002	-	1260	495	5128	4994
05	3,987	0.070	0.998	0.070	1643	1513	1098	878	1649	1511	1157	937	1665	1508	1290	1069	1854	1454	3039	2108	1883	1425	-	3221	1514	-	4148.	3969	1571	862	4997	4819	1243	512	5124	4998
00	3.797	0.066	0.998	0.066	1641	1516	1091	881	1647	1514	1150	940	1661	1512	1283	1072	1845	1484	3031	2812	1873	1436	3456	3225	1501	943	4142	3972	1555	879	4992	4822	1227	529	5120	4997
95	3.607	0.063	0.998	0.063	1638	1520	1083	884	1644	1518	1142	943	1658	1516	1275	1675	1836	1474	3024	2815	1862	1447	3449	3229	1488	956	4136	3974	1540	895	4986	-	1210	546	5115	4999
90	3,417	0.060	0.998	0.060	1635	1523	1076	887	1641	1522	1135	946	1655	1520	1268	1078	1827	1484	3017	2819	1852	1459	3441	3233	1475	10.10	4131	3976	1524	911	4981	4827	1194	563	5111	5000
85	3,227	0.056	0.998	0.056	1632	1527	1068	890	1638	1525	1127	949	1651	1524	1260	1081	1817	1493	3009	2823	1841	-	3434	3236	1462	-	4125	3979	1508	928	4975	4830	1178	579	5107	5002
30	3.037	0.053	0.999	0.053	1629	1530	1060	893	1635	1529	1120	952	1648	1528	1253	1034	1808	1503	3002	2826	1830	1470	3427	3240	1449	40.	4119	3981	1492	944	4969	4832	1161	596	5102	5003
75	2.847	0.050	0,999	0.050	1627	1533	1053	896	1632	1533	1112	955	1644	1532	1245	1087	1799	1513	2994	2830	1820	1481	3419	3244	1436	-	4113	3983	1476	960	4964	4835	1145	613	5098	5004
70	2.657	0.046	0.999	0.046	1624	1537	1045	899	1629	1536	1104	957	1641	1536	1237	1090	1790	1523	2987	2833	1809	1503	3412	3247	1423	-	4107	3986	1460	977	4958	4837	1128	630	5093	5006
65	2.467	0.043	0,999	0.043	1621	1540	1038	902	1625	1540	1097	960	1637	1540	1230	1093	1780	1533	2979	2836	-	-	3404	3251	-	1038	4101	3988	1444	993	4952	4839	1112	646	5088	5007
BO	2.277	0,040	0.999	0.040	1618	1543	1030	904	1622	1543	1089	963	1634	1544	1222	1096	1771	1542	2972	2840	1798	1515	3397	3254	-	1051	4096	3990	1428	1009	4947	4841	1095	663	5084	5008
55	2.087	0.036	0.999	0.036	1615	1547	1023	_	1619	1547	1082	966	1630	1548	1215	1099	1762	1552	2964	2843	1777	-	3389	3258	1384	1065	4090	3992	1412	1026		4844	1079	680	5079	5009
50	1.898	0.033	0.999	0.033	1612	1550	1015	910	1616	1550	1074	969	1627	1552	1207	1102	1752	1562	2956	2847	1766	1537	3382	3261	1370		4063	3994	1396	1042	4935	4846	1062	697	5074	5010
45	1,708	0.030	1,000	0.030	1609	1553	1007	913	1613	1554	1066	972	1623	1556	1199	1105	1743	1571	2949	2850	-	-	3374	3264	1357	1091	4077	3996	1380	1058	4929	100.00	1046	713	5069	5011
40	1,518	0.026	1.000	0.026	1606	1557	1000	916	1610	1557	1059	975	1619	1560	1192	1107	1734	1531	2941	-	1755	1559	-3366	3268	-	1105	4071	3998	1364	1074	-	4850	1029	730	5064	5012
35	1.328	0.023	1.000	0.023	1603	1560	992	919	1607	1560	1051	978	1616	1563	1184	1110	1724	1591	2933	2853 2856		1570	3359	3271	1331	-	4065	4000	1348	1091	4917	4852	1013	747	5060	5013
30	1,138	0.020	1.000	0.020	1600	1563	984	921	1603	1564	1043	980	1612	1567	1176	1113	1715	1600	2933	2859	1734	-	3351	3274	-	1132	4059	4002	1332	1107	4910		998	763	5055	5014
25	0.949	0.017	1.000	0.017	1597	1566	977	924	1600	1567	1036	983	1608	1571	1169	1116	1705	1610	2918	2863	1712	1592	3343	3277	1305		4053	4004	1316	-	4904	4856	980	780	5049	5015
20	0.759	0.013	1.000	0.013	1594	569	969	927	1597	1571	1028	986	1605	1575	1161	1119	1696	1620	2910	2865	1702	1603	3335	3281		-	4046	4006	1300		4898	4858	963	797	5044	5015
5	0.569	0.010	1,000	0.010	1591	1573	961	930	1594	1574	1020	989	1601	1579	1153	1122	1687	1629	2902	2869	1691	1614	3328	3284			4040	4007	1284		-	4859	946	813	5039	5016
10	0.379	0.007	1.000	0.007	1588	578	953	933	1591	1577	1012	991	1597	1582	1146	1124	1677	1639	2894	2872	1680	1636	3320	3287		1185	4033	4009	1268	-	-	4861	930	830	5034	5017
5	0.190	0.003	1,000	0.003	1585	579	946	935	1587	1581	1005	994	1594	1586	1138	1127	1668	1648	2886	2875	1669	1647	3312	3290		1198	4027	4011	1252	-	4879		913	847	5029	5017
0	0.000.	0.000	1.000	0,000	1582	582	938	938	1584	1584	997	997	1590	1590	1130	1130	1658	1658	2878	2878	1658	1658	3304	3293 3296		1212	4021	4012	1236	1204	4873	4864	897	863	5023	5018

REFER TO FIGURE: CMSG-4A

E = $[ab+(h \times \tan \alpha)] \times \cos \alpha$ F = $[ab-(h \times \tan \alpha)] \times \cos \alpha$ H₁ = $(Ca/2)+(h/\cos \alpha)+(Ab-h \times \tan \alpha) \times \sin \alpha$

Hi = (Cas2)*(h/cos α)*(Ab-h x tan α) x sin α .

Ab = (Cas2)*(h/cos α)-(ab+h x tan α) x sin α :

ab = Ab=Distance from centre line of vehicle to K.E. for Tangent Track at height 'h' from rail level ac = Distance from centre line of canted track to K.E. for Tangent track at height 'h' from rail level, bc = hxtan α = Lateral increment due to cant (measured along the line parallel to line joining top of rails).

Examined and found in order

Bradeep Kor. Mistora

45 of 117.

APPENDIX - 3A (TNL)

CANT EFFECT ON KINEMATIC ENVELOPE UNDER GROUND SECTIONS (RECTANGULAR BOX/ TUNNELS)

													- 9	1																REF	F: PAR	A 1.7.2
	ve rail level meas lar to plane of tra		•			h =	947		544	h =	1130	net.		r; =	2885			h =	3287			h =	4005			h =	4158			h = 4	4318	
	om centre line of E. for langent trac	k -			0	ab =	1570			ab =	1576			ab =	1622			ab =	1629			ab ≃	1089			ab =	980			ab =	820	
Cant	Angle a	Sin a	006.3	tan a	E	F	H ₃	H ₂	E	F	Hy	Н	E	F	H,	Hu	E	F	Hy	H ₂	E	F	H _s	H ₂	Ε	F	H	He	E	F	Hi	H ₂
125	4.748	0.063	0.997	0.083	1643	1486	1136	876	1664	1477	1319	1058	1862	1385	3072	2803	1896	1351	3473	3203	1417	754	4144	3964	1321	632	4287	4125	1175	460	4434	4298
120	4.558	0.079	0.997	0.080	1640	1490	1129	879	1661	1481	1312	1061	1853	1395	3065	2806	1885	1363	3466	3207	1404	767	4139	3966	1307	546	4283	4127	1161	474	4430	4299
115	4.368	0.076	0.997	0.076	1638	1493	1121	882	1657	1485	1304	1064	1844	1405	3058	2810	1875	1374	3459	3211	1391	781	4134	3968	1294	560	4278	4129	1146	489	4425	4301
110	4,178	0.073	0.997	0.073	1635	1497	1114	885	1654	1489	1257	1067	1835	1415	3051	2814	1864	1385	3452	3215	1378	794	4129	3970	1280	674	4273	4131	1132	503	4421	4302
105	3.987	0.070	0.998	0.070	1632	1500	1106	888	1651	1494	1269	1070	1826	1424	3044	2817	1354	1396	3445	3216	1365	808	4124	3972	1267	588	4269	4132	1118	518	4417	4303
100	3 /97	0,066	0.998	0.066	1629	1504	1099	891	1647	1498	1282	1073	18.6	.1434	303?	2821	1843	1408	3438	3222	1352	821	4118	3974	1253	702	4264	4134	1104	532	4413	4304
95	3,607	0.063	0.998	0.063	1626	1507	1091	894	1644	1502	1274	1075	1807	1444	3J29	2824	1833	1419	3430	3226	1339	835	4113	3976	1240	716	4259	4136	1090	547	4409	4305
90	3.417	0.060	0.998	0.060	1624	1511	1084	897	1641	1506	1267	1079	1798	1454	3022	2828	1822	1430	3423	3229	1326	848	4108	3978	1226	730	4254	4137	1076	561	4404	4306
85	3.227	0.056	0.998	0.056	1621	1514	1076	900	1637	1510	1259	1082	1789	1464	3315	2831	1811	1441	3416	3233	1313	862	4102	3980	1213	744	4249	4139	1062	576	4400	4307
80	3.037	0.053	0.999	0.053	1618	1518	1069	902	1634	1514	1252	1085	1780	1474	3007	2835	1801	1453	3409	3236	1300	875	4097	3982	1199	758	4244	4140	1048	590	4395	4308
75	2.847	0.050	0.999	0.050	1615	1521	1061	905	1630	1518	1244	1088	1770	1484	3000	2838	1790	1464	3401	3240	1287	889	4092	3983	1185	772	4239	4142	1033	605	4391	4309
70	2.657	0.046	0.999	0.046	1612	1524	1054	908	1627	1522	1237	1091	1761	1494	2992	2841	1780	1475	3394	3243	1273	902	4086	3985	1172	786	4234	4143	1019	619	4386	4310
65	2.467	0.043	0.999	0.043	1609	1528	1046	911	1623	1528	1229	1094	1752	1503	2985	2845	1769	1486	3387	3246	1260	916	4081	3987	1158	800	4229	4144	1005	633	4382	4311
60	2.277	0.040	0.999	0.040	1605	1531	1039	914	1620	1530	1222	1096	1742	1513	2977	2848	1758	1497	3379	3250	1247	929	4075	3989	1144	814	4224	4146	991	648	4377	-
55	2.087	0.036	0.999	0.036	1603	1534	1031	917	1616	1534	1214	1099	1733	1523	2970	2851	1748	1508	3372	3253	1234	942	4070	3990	1131	828	4218	4147	977	662	4373	
50	1.898	0.033	0.599	0.033	1600	1538	1023	919	1613	1538	1207	1102	1724	1533	2962	2854	1737	1519	3364	3256	1221	956	4064	3992	1117	842	4213	4148	963	677	4368	1
45	1.708	0.030	1,000	0.030	1598	1541	1016	922	1609	1542	1199	1105	1714	1542	2955	2858	1726	1530	3357	3259	1208	969	4058	3993	1103	856	4208	4149	948	691	4363	-
40	1,518	0.026	1.000	0.026	1595	1544	1008	925	1605	1548	1191	1108	1705	1552	2947	2861	1716	1541	3349	3263	1195	983	4052	3995	1090	870	4203	4151	934	705	4358	4315
35	1.328	0.022	1.000	0.023	1592	1548	1001	928	1602	1549	1184	1111	1695	1562	2939	2864	1705	1552	3341	3266	1182	996	4047	3996	1076	883	4197	4152	920	720	4353	10.00
30	1,138	0.020	1,000	0.020	1589	1551	993	931	1598	1553	1176	1113	1686	1571	2932	2867	1694	1563	3334	3269	1168	1009	4041	3998	1062	897	4192	4153	906	734	4348	-
25	0,949	0.017	1,000	0.017	1585	1554	985	933	1594	1557	1168	1116	1677	1581	2924	2870	1683	1574	3326	3272	1155	1023	4035	3999	1049	911	4186	4154	891	748	4343	
20	0.759	0.013	1.000	0.013	1582	1557	978	936	1591	1561	1161	1119	1667	1591	2916	2873	1672	1585	3318	3275	1142	1036	4029	4000	1035	925	4181	4155	877	763	4338	-
15	0.569	0.010	1,000	0.010	1579	1561	970	939	1587	1565	1153	1122	1658	1600	2909	2876	1662	1596	3311	3278	1129	1049	4023	4001	1021	939	4175	4156	863	777	4333	-
10	0.379	0.007	1,000	0.007	1576	1564	962	942	1583	1568	1145	1125	1648	1610	2901	2879	1651	1607	3303	3281	1115	1062	4017	4003	1008	952	4169	4156	849	791	4328	4317
5	0.190	0.003	1,000	0.007	1573	1567	955	944	1580	1572	1138	1127	1639	1619	2893	2882	1640	1618	3295	3284	1102	1002	4011	4004	994	966	4164	4157	834	806	4323	4317
0	0.000	0.000	1.000	0.003	1570	1570	947	947	1576	1576	1130	1130		-	2885	2885	1529	1629	3295		-	-	-	-	-	-	-	4158	-	-	-	-
U	0.000	0.000	1.000	0.000	1370	13/0	947	247	19/6	1376	1130	1130	1629	1629	2000	2085	1524	1029	3287	3287	1089	1089	4005	4005	980	980	4158	4158	820	820	4318	4318

REFER TO FIGURE: CMSG-4A

E = [ab+(h x tan α)] x cos α $F = [ab-(h \times tan \alpha)] \times cos \alpha$

L= (ca/2)+(h/c) cos α)+(Ab-h x tan α)x sin α; H=(Ca/2)+(h/c)cos α)+(ab+h x tan α) x sin α ab=Ab=Distance from centre line of vehicle to K.E. for Tangent Track at height 'h' from rail level. bc = hxtanα = Lateral increment due to cant (measured along the line parallel to line joining top of rails).

Examined and found in order

Bradeep Kon. Mistoria

Page | 39

46 of 117.

APPENDIX - 4

LATERAL AND VERTICAL SHIFT OF CENTRE OF CIRCULAR TUNNEL FOR DIFFERENT CANT VALUES (With D₁ = 880 mm & Radius r=2900mm

REFER TO FIGURE: CMSG-3 AND PARA Nov. 1.7.1 (R)-b 8.1.7.2 (R)-b

All figures are	Vertical Shift of Tunnel centre = Y	Lateral Shift of Tunnel centre - X	Angle 8	Angle α	Sin α = Cant / 1510	CANT
La contraction of the contractio		mm	Degrees	Degrees		Min
	mm	170	69.5061	4,7485	0.08278	125
	56		59.5061	4.5581	0.07947	120
4	54	163		4.3581	0.07616	115
* M	52	156	69.5061	1,000	0.07285	110
	50	149	69.5061	4.1776		105
	48	142	69.5061	3.9874	0.06954	
(a) The cant is provided by raising the outer rail which	46	135	69.5061	3.7972	0.06623	100
will mean, rotating the tunnel about the mid point of	43	129	69.5061	3.6071	0.06291	95
top of inner rail.	41	122	69.5061	3.4170	0.05960	90
annual manual control of the control	39	115	69.5061	3.2270	0.05629	85
(b) 'X' is lateral shift of the centre of the tunnel	37	108	69.5061	3.0370	0.05298	80
towards inside of the curve	35	101	69.5061	2.8470	0.04967	75
$X = \{\{2 \times (r-D1)/\sin \theta\} \times \{\sin \alpha/2\}\} \times \cos (90-\theta -\alpha/2)$	33	94	69.5061	2.6570	0.04636	70
	31	88	69.5061	2.4671	0.04305	65
(c) 'Y' is the vertical shift of the centre of the tunnel (upwards)	28	81	69.5061	2.2773	0.03974	60
Y=[(2 x (r-D1)/sin θ } x { sin α/2}} x sin (90-θ-α/2) where,	26	74.	69.5061	2.0874	0.03642	55
	24	67	69.5061	1.8976	0.03311	50
'r' is internal radius of the circular tunnel=2900 mm	22	61	69.5061	1.7077	0.02980	45
D1 = depth from rail level to invert of circular tunnel=880 mm	19	54	69.5061	1.5179	0.02649	40
α = angle of rotation=sin-1 (Cant/g) and	17	47	69.5061	1.3282	0.02318	35
θ = angle subtended by line joining top of two ralls and the line	15	40	69.5061	1.1384	0.01987	30
joining mid point of top of inner rail and the centre of circular	12	34	69.5061	0.9486	0.01656	25
Tunnel	10	27	69.5061	0.7589	0.01325	20
= tan ⁻¹ [(r-D1) / (g/2)] in degrees=69.5061	7	20	69.5061	0.5692	0.00993	15
146 4	5	13	69.5061	0.3794	0.00662	10
g= Centre to centre of rails = 1510 mm	2	7	69.5061	0.1897	0.00331	5
1.7	0	0	69.5061	0	0	0

Examined and found in order

Bradeep Kr. Michra
ADENT.TOPIN.
ROSO, DEMONY of RANGES

A ASSESSE SELECTION OF THE PROPERTY OF THE PRO

47 of 117.

$\label{eq:APPENDIX-5} \textbf{APDIX-5}$ Additional clerance for platforms on curves under ground, elevated and at grade stations

Refer Para 2.7

							EXTRA CLEA	RANCE						
				INSIDE	OF CURVE						OUTSIDE O	F CURVE		
RADIUS	At	t centre li	ne between B	ogies	At Edge	of Open Door, N betwee	learest to the n Bogies	e centre line	At End of Coach	At Edge of C	pen Door, Far	thest from Bogies	the centre I	ine between
	Mid throw =28500/R	Nosing	Additional Clearance	Additional Clearance (rounded up)	Throw =27720/R	Nosing= 13*1.25/11.075	Additional Clearance	Additional Clearance Frounded up)	End throw =34683/R	Throw =23856/R	Nosing =13*10.05 /11.075	Diff bet N & N2	Additional Clearance	Additional Clearance (rounded up
R	٧	N	V-N	V-N	Vs	N,	V ₃ -(N-N ₁)	V ₃ -{N-N ₁ }	V _o	V4	N ₂	N-N ₂	V ₄ -(N- N ₂)	V4-(N-N2)
Metres	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
1	2	3	4a	4	5	6	7a	7	8	9	10	11	12a	12
3000	10	13	-3.5	0	9.2	1.5	-2.3	0	12	8.0	11.8	1.2	6.7	5
2800	10	13	-2.8	0	9.9	1.5	-1.6	0	12	8.5	11.8	1.2	7.3	10
2600	11	13	-2.0	0	10.7	1.5	-0.9	0	13	9.2	11.8	1.2	8.0	10
2400	12	13	-1.1	0	11.6	1.5	0.0	0	14	9.9	11.8	1.2	8.7	10
2200	13	1.3	0.0	0	12.6	1.5	1.1	5	16	10.8	11.8	1.2	9.6	10
2000	14	13	1.3	5	13.9	1.5	2.3	5	17	11.9	11.8	1.2	10.7	10
1800	16	13	2.8	5	15.4	1.5	3.9	S	19	13.3	11.8	1.2	12.1	10
1700	17	13	3.8	5	16.3	1.5	4.8	5	20	14.0	11.8	1.2	12.8	15
1600	18	13	4.8	5	17.3	1.5	5.8	10	22	14.9	11.8	1.2	13.7	15
1500	19	13	6.0	10	18.5	1.5	6.9	10	23	15.9	11.8	1.2	14.7	15
1400	20	13	7.4	10	19.8	1.5	8.3	10	25	17.0	11.8	1.2	15.8	20
1300	22	13	8.9	10	21.3	1.5	9.8	10	27	18.4	11.8	1.2	17.1	20
1200	24	13	10.8	15	23.1	1.5	11.6	15	29	19.9	11.8	1.2	18.7	20
1100	26	13	12.9	15	25.2	1.5	13.7	15	32	21.7	11.8	1.2	20.5	25
1000	29	13	15.5	20	27.7	1.5	16.2	20	35	23.9	11.8	1.2	22.7	25

NOTES

- Section is a contract of core , the difference between clearance required at coach and that the farthest door edge is less than 25mm. As half width of core? at least 25mm has than that at doors locations, additional clearance to be provided is additional clearance to be provided is additional clearance.
- column 12).

 Z. Values of additional clearances (Column 4,7 and 12) rounded UP to the nearest value that is divisible by 5mi
- Negative values of addition
 Extra clearance for curve
 - Inside of curve:
 V+ (125C* / R) =28500/R when C=15.10m (worst case/ max bogie pilch)
 - Va= [(125)a(15.12 4x 1.251) /R] =27720 /R N = N x (XWC //21013 x 1.25/11.075 =1.467 mm
 - The higher of (i) column 4 and (ii) column 7 shell be adopted.
 - V₀=(125 C, 9R)-(125c*/R)=34683 /R for coach and when c=14.6 /r
 - C_=2x10.05=20.1 meters and C=14.60 meters for the worst case.

 N. 2899sion at the furthest edge of an open door why (XVI C_Z) =13.x 10.05/11.075mm=11.8 mm.
 - N₄=Nosing at the furthest edge of an open door =Nx (X)(C₂/2) =13 x 10.05/11.075mm=11.8 m R= Radius of curve in meters
- The 10.05m value (X) above is the distance between the between the Bugies and the edge of the luthrest door leaf (0.875m value) in its open position.

Examined and found in order

Gradelp Kor. Michora

48 of 117.

APPENDIX - 6 Sample Egress calculation report for Underground Station

UNI	DERGROUND ST	TATION	25.00	
Year	Boarding	Alighting	Service A	
Dir 1 (Towards CMBT)	57,55	44.67	Per Min	
Dir 2 (Towards MMC)	11.42	28.93	Per Min	
Head way				
			3.54	mins
Sectional Load Direction 1			5176	Considering 1 missed
Sectional Load Direction 2			2996	headway and surge factor
Dense Crush Load			2004	
Platform Evacuation Time		within	4	mins
Surge Factor		70	1.3	mins
2 Headway entraining load for Peak Direction			7.1	mins
1 Headway entering entraining load for off-peak D	rection		3.54	mins
		1		
POL (Emergency Service) Inc	ident Direction 1		2586.2	
POL (Emergency Service) Inc	ident Direction 2		2373.9	
Required Egress Capacity of	Platform 1 (PEC)	,	646.56	
(Evacuation Load / Evacuation Time)				
Staircase Egress Capacity (Per/min)	190		3	55.5
Working Escalator Egress Capacity (Per/min)				120.0
Slopped Escalato: Egress Capacity (Per/min)			1	55.5
Elements	GARA PALES	2000	Width	Nos
Public Staircase			3.6	1
Fire Escape staircase inside station box			1.5	2
Working Escalator (4 nos; 3 used)			1	3
Stopped Escalator (0 nos; 0 used)			1	0
Proposed Egress Capacity			726.3	
Proposed Time For evacuation of Platfor n(Fp)	NEW ROLL - 18 - 18 - 18 - 18 - 18 - 18 - 18 -	- Walter	3.56	

Examined and found in ord Bradelly Kor. Michric ADERLY APPEN BOOK OF THE PROPERTY OF THE PR

49 of 117.

APPENDIX - 6A Sample Egress calculation report for Elevated Station

	ELEVATED S	TATION	
Year	Boarding	Alighting	
Dir 1 (Towards CMBT)	34.47	3.80	Per Min
Dir 2 (Towards MMC)	5.27	31.52	Per Min

Head way		8.56	mins
Sectional Load Direction 1		1181	Considering 1 missed
Sectional Load Direction 2		997	headway and surge factor
Dense Crush Load		2004	
Platform Evacuation Time	within	5.5	mins
Surge Factor		1.3	mins
2 Headway entraining load for Peak Direction		17.1	mins
1 Headway entering entraining load for off-peak Direction		8.56	mins

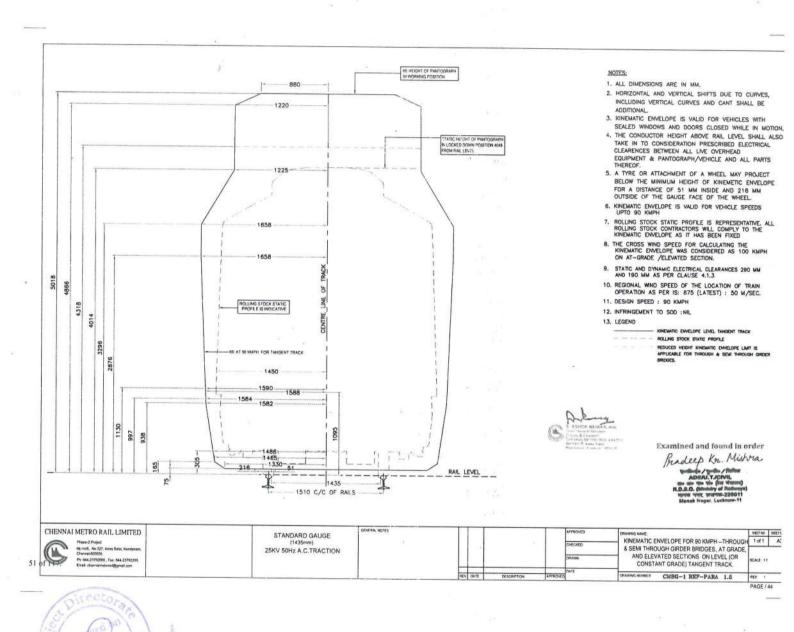
POL (Emergency Service) Direction 1	1947.8
POL (Emergency Service) Direction 2	1114.6

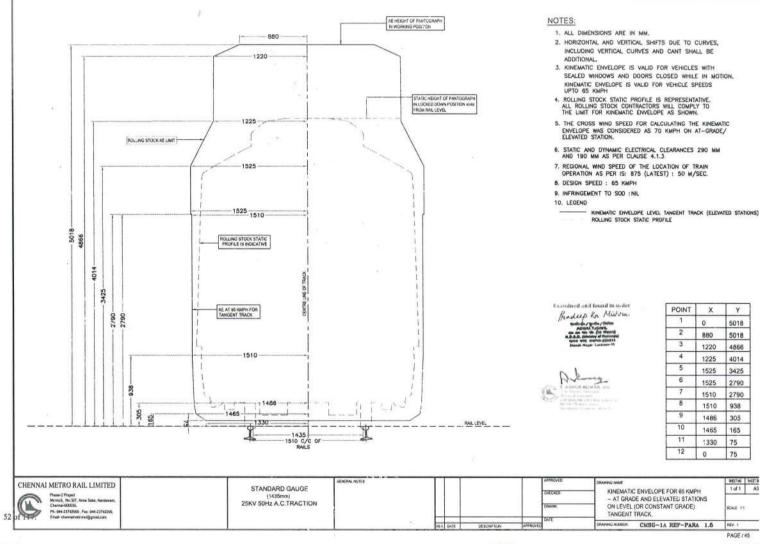
Direction 1		
Elements	Width	Nos
Public Staircase	3.6	1
Fire Escape staircase inside station box	3.6	1
Fire Escape staircase outside station box	0	0
Working Escalator (2 nos; 1 used)	1	1
Stopped Escalator (0 nos; 0 used)	1	0
Proposed Egress Capacity	519.6	
Proposed Time For evacuation of Platform(Fp)	3.75	

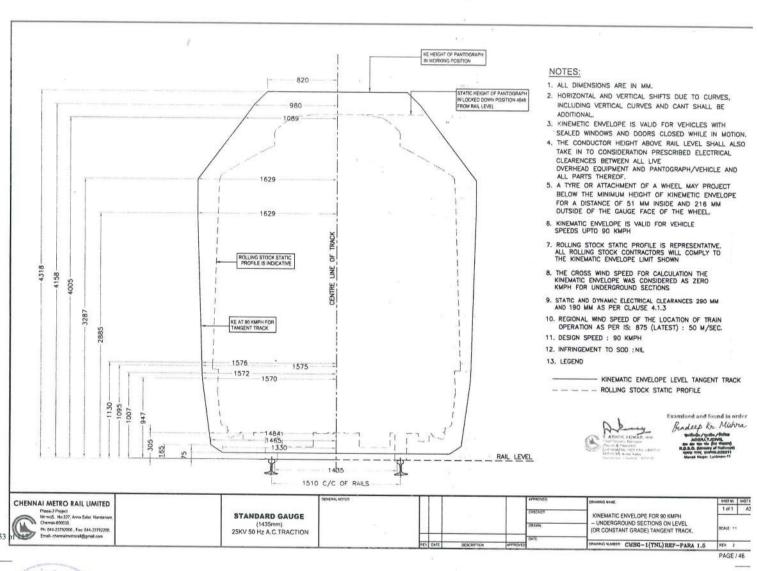
Direction 2					
Elements	Width	Nos			
Public Staircase	3.6	1			
Fire Escape staircase Inside station box	3.6	1			
Fire Escape staircase outside station box	. 0	0			
Working Escalator (2 nos; 1 used)	1	1			
Stopped Escalator (0 nos; 0 used)	1	0			
Proposed Egress Capacity	519.6				
Proposed Time For evacuation of Platform(Fp)	2.15				

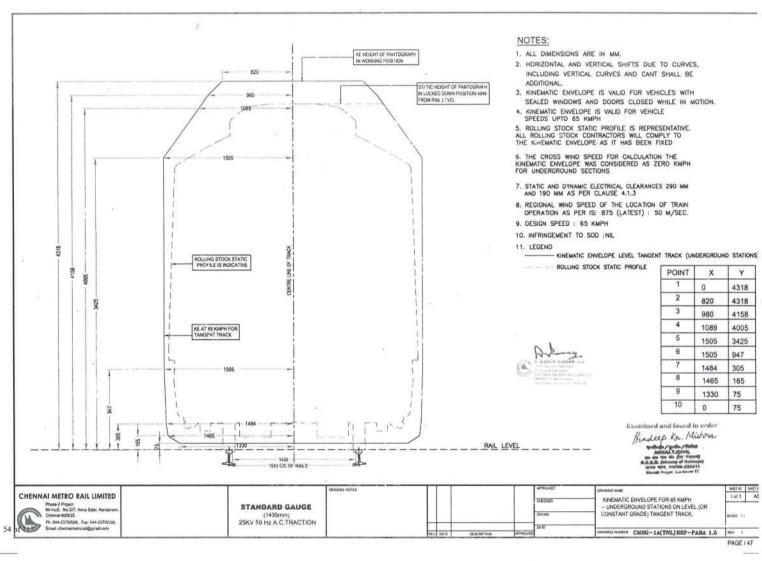
Examined and found in order

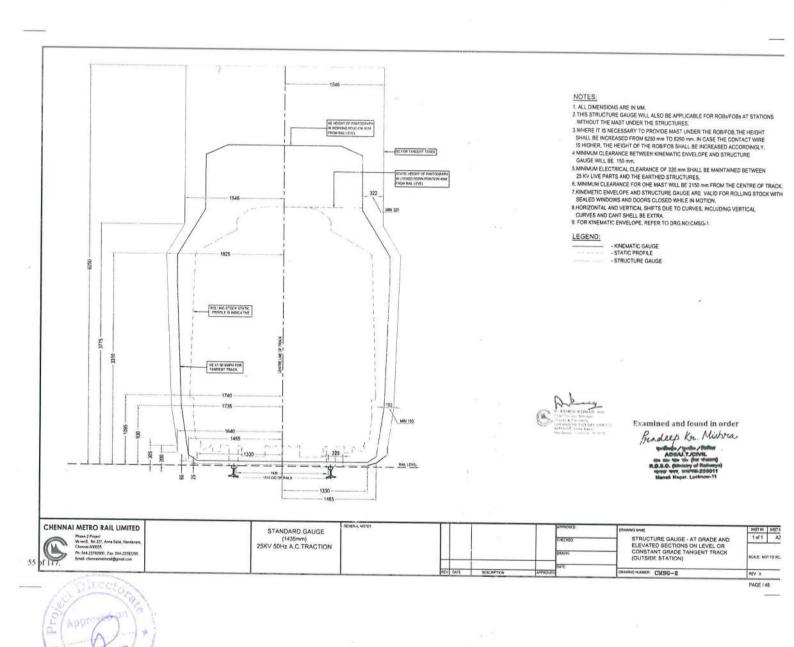
Phodelp Kyr. Mishria

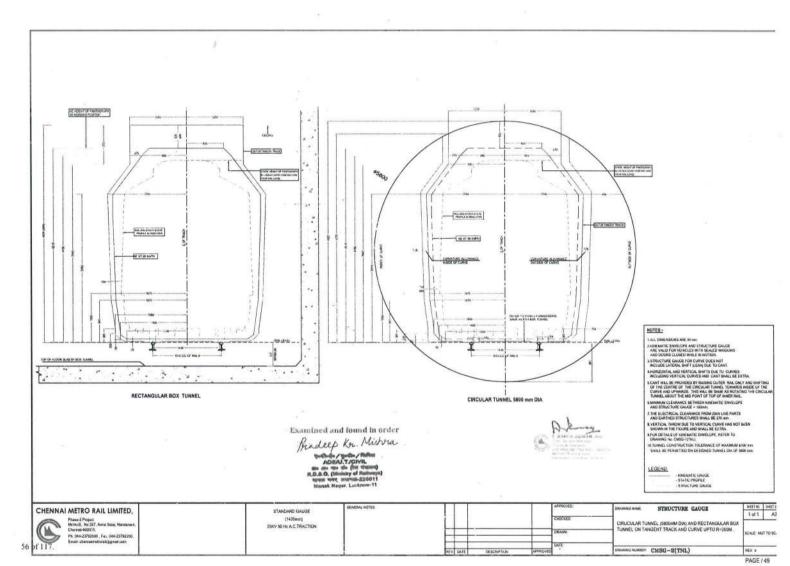

Anni James

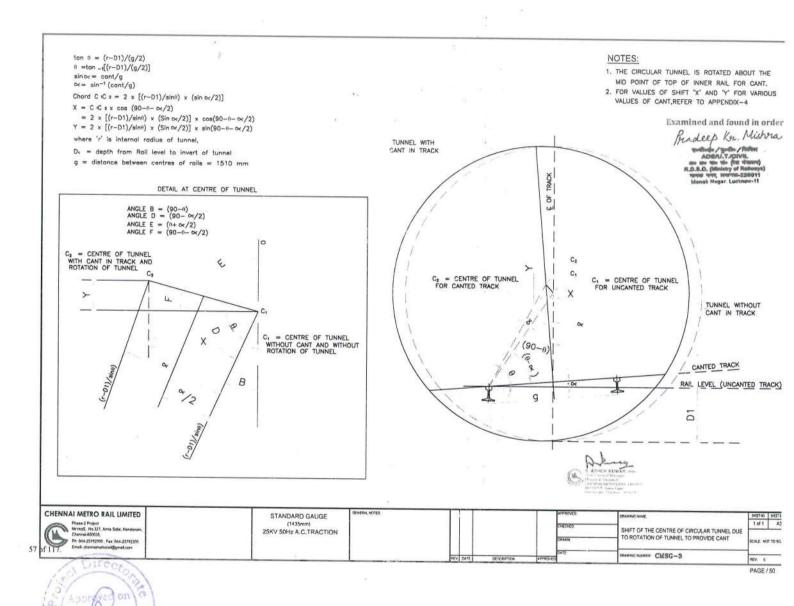

Ann

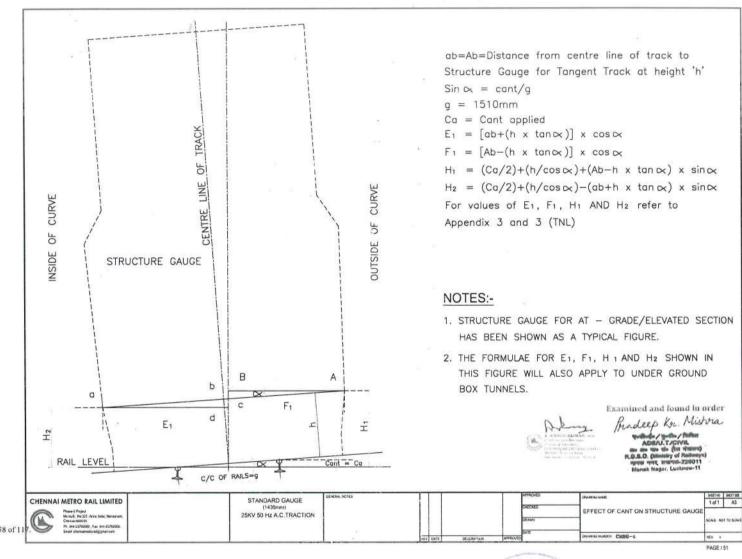

50 of 117.

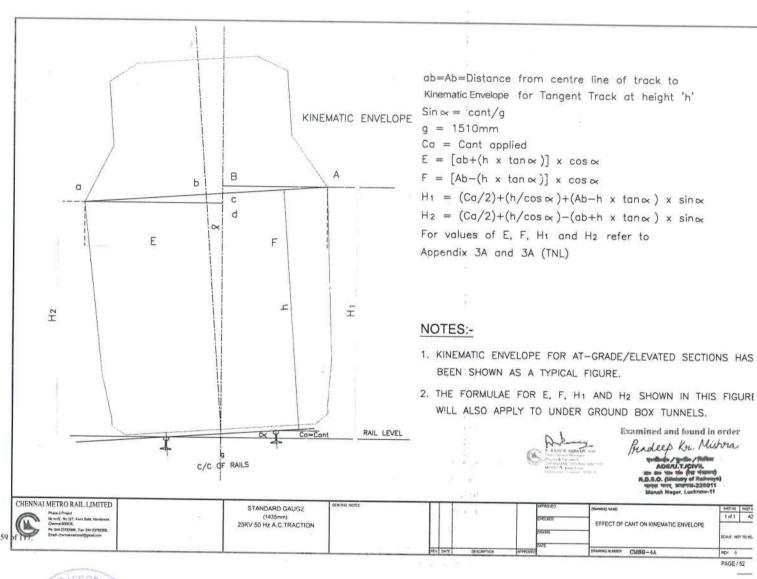


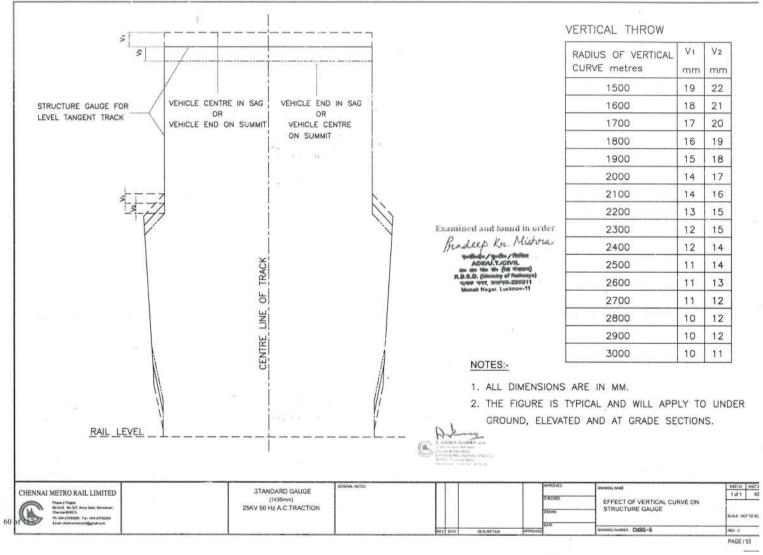


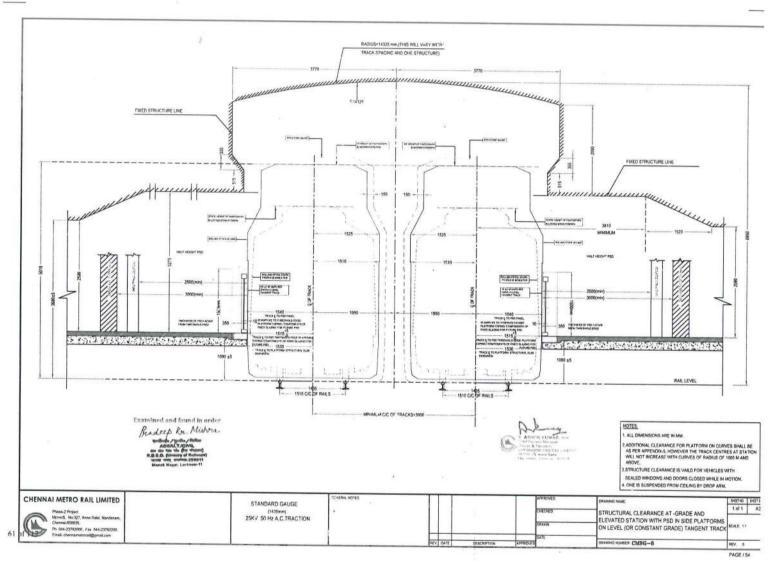


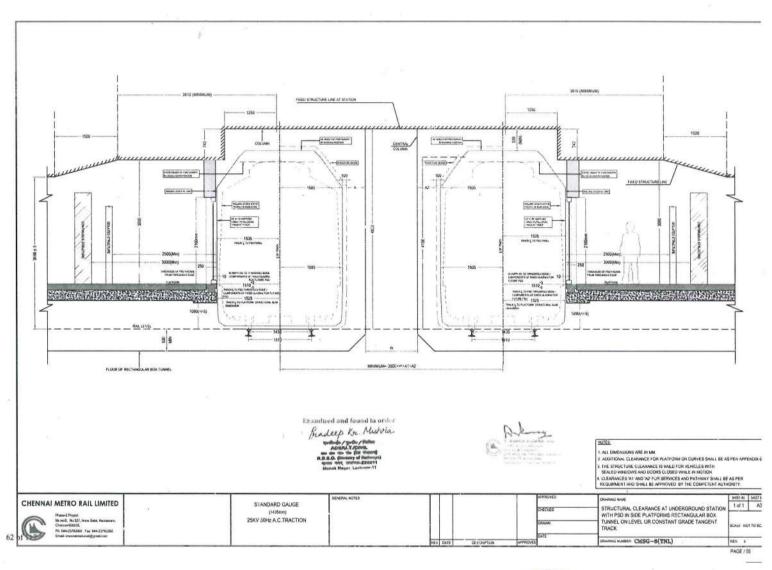


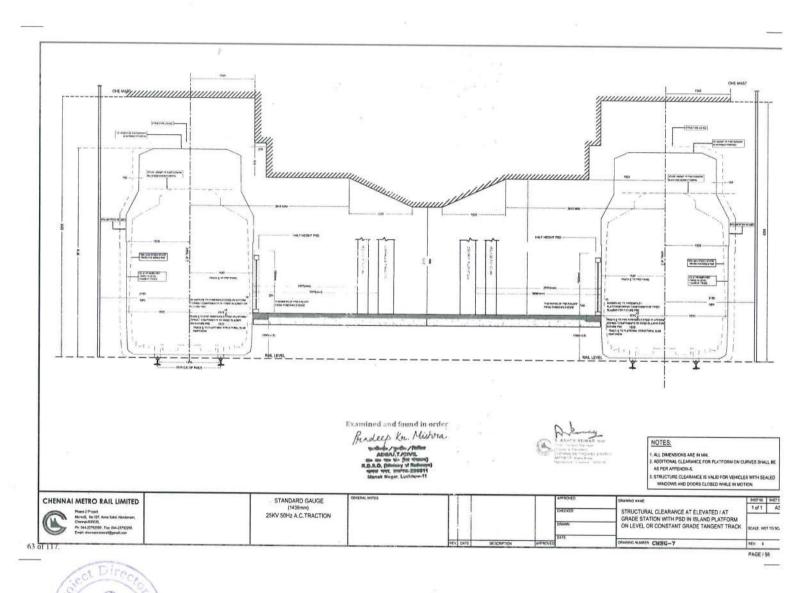


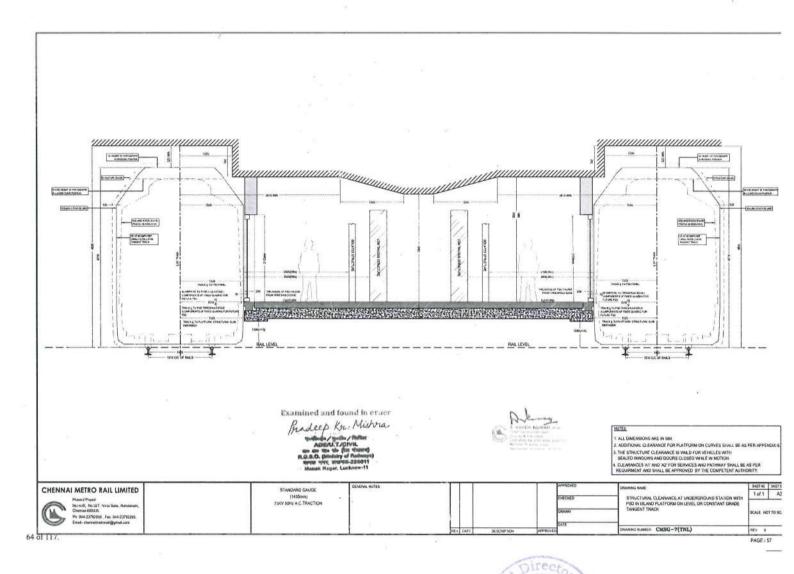


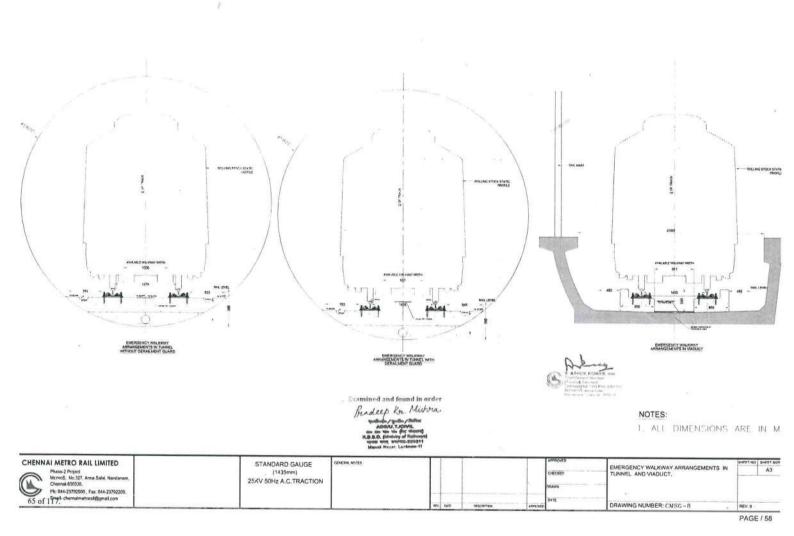


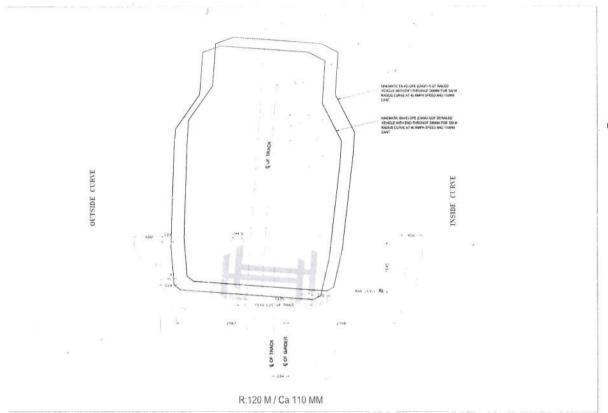

Approved to the state of the st











NOTES:

ALL DOLEGON ARE IN LINE

2.AFTER DERAILMENT CLEARANCE OF KE TO VIADUCT WALL #137MM FOR END THROW)

3 LATERAL CLEARANCE BETWEEN RUNNING RAIL (NON GAUGE FACE), AND DERAILMENT GUARD FOR DOUBLE RESILIENT BASE PLATE ASSEMBLY FASTENING SYSTEM 250-20MM. LATERAL CLEARANCE FOI WORST CASE-270MM

4.KINEMATIC ENVELOPE CONSIDERED AS PER CMSG-1

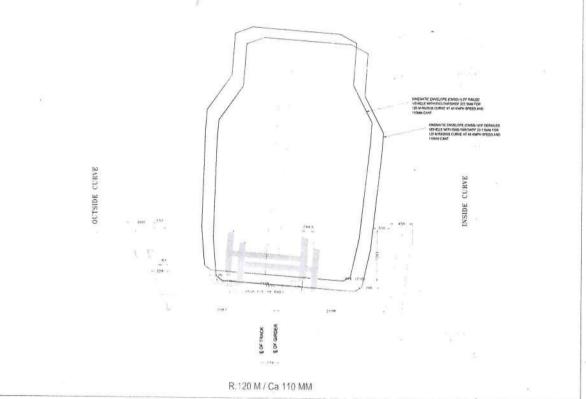
5.WORST CASE RADIUS +120M, CANT +110MM, SPEED+ 40 KMPH END THROW 289MM (APPENDIX-2B)

6.THE LATERAL SHIFT DUE TO DERAILMENT IS 244.5MM (270MM +72MM+5MM+32.5MM+135MM)

Examined and found in order

Fradelf Kn. Microso

ADMATAPAN


ADMAT

KINEMATIC ENVELOPE POSITION IN DERAILED CONDITION-OUT WARD

CHENNAI METRO RAIL LIMITED Prisse 2 Priged Metros, No. 327, Anna Salai, Nandarian, Charana-800035, Pri 04-2790200, Pr. 20-42790200, 66 of 1 Epipel-dennainetroak@gmal.com	STANDARD GAUGE						DECKED CHANNE	KE OF DERAILED VECHICLE FOR VIADUCT SECTION WITH SHARPEST CURVE AND MAX.CANT-DERAILED CONDITION (R120m, CANT-110mm) (OUT WARD)	SHEE NO SHEET SAT A3
			10	DAVE	DESCRIPTION	ATTROVE	E-SIE	DRAWING NUMBER: CMSG - 9A	AEV D
And the second s									PAGE / 59

KINEMATIC ENVELOPE POSITION IN DERAILED CONDITION-IN WARD

MOTEC.

1.ALL DIMESION ARE IN MM

2.AFTER DERAILMENT CLEARANC OF KE TO VIADUCT WALL +350MM (FOR MID THROW)

3.LATERAL CLEARANCE BETWEEN RUNNING RAIL (NON GAUGE FACE AND DERAILMENT GUARD FOR DOUBLE RESILIENT BASE PLATE ASSEMELY FASTENING SYSTEM 250-28MM, LATERAL CLEARANCE FC WORST CASE-270MM

4 KINEMATIC ENVELOPE CONSIDERED AS PER CMSG-1

5.WORST CASE RADIUS =120M, CANT =110MM, SPEED= 40 KMPH MID THROW 237.5MM (APPENDIX-2A)

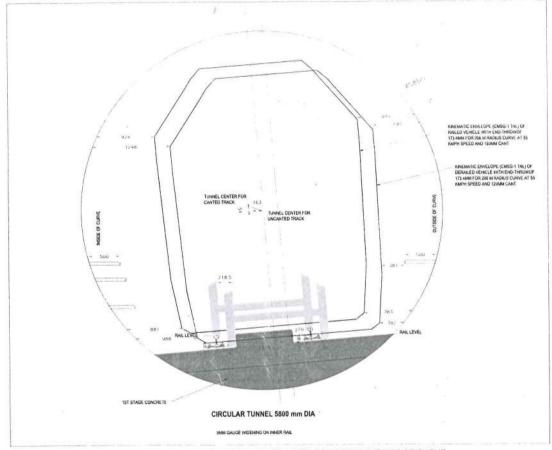
6.THE LATERAL SHIFT DUE TO DERAILMENT IS 244.94M (270MM +72MM+5MM+32.5MM+135MM)

Examined and found in order

Gradelp Kyr. Mistra

ADEALT.FORM

BY AND THE STREET


CHENNAI METRO RAIL LIMITED	STANDARD GAUGE	GENERAL NOTES		18		APPROVED	KE OF DERAILED VEHICLE FOR VIADUCT	SHEET NO SHEET SU	
Phase-2 Finjar (1435mm) Phase-2 Finjar (1435mm) Merosi-60005. Ph. 044-2372200. Fat: 044-23722200. Ph. 044-2372200. Fat: 044-23722200. Ph. 044-2372200. Fat: 044-23722200.							CHECKED	SECTION WITH SHARPEST CURVE AND MAX.CANT-DERAILED CONDITION	A3
	2017 3012 1.0.110101101			2.2		DRAWN.	(R120m, CANT116mm) (IN WARD)		
			7		DATE				
			REV. DATE	DESCRIPTION	AFFICIARE		DRAWING NUMBER: CMSG-9B	REV: 0	
								PAGE / 60	

62

File No. 2024/Proj./CMRL/SoD/PH-II/30/98 (Computer No. 3480306)

Generated from eOffice by AVINASH, JD/PROJECT(A), JD/PROJECT, Project Directorate on 13/05/2025 10:41 am

Examined and found in order Bradeep Kon. Michora

NOTES: 1 ALL DIMESION ARE IN MM

Z AFTER DERAILMENT CLEARANC OF KE TO TUNNEL WALL =392MM (FOR END THROW)

3 LATERAL CLEARANCE BETWEEN RUNNING RAIL AND DERAILMENT GUARD FOR DOUBLE RESILIENT BASE PLATE ASSEMBLY FASTENING SYSTEM 250-20MM. LATERAL CLEARANCE FOR WURST CASE=270MM

4.KINEMATIC ENVELOPE CONSIDERED AS PER CMSG-1(TNL)

5.WORST CASE RADIUS =200M, CANT =120MM, SPEED=55 KMPH END THROW 173.4MM (APPENDIX-2A)

5,X8Y BEEN SHIFTED IN ACCORDANCE WITH FORMULA IN FIGURE CMSG-3

7. THE LATERAL SHIFT DUE TO DERAILMENT IS 218.5MM (270MM-51.5MM)

KINEMATIC ENVELOPE POSITION IN DERAILED CONDITION OUTSIDE OF CURVE

68 of 1 fingit-channameterategymat.com			Age DATE DESCRIPTION	ATTOWE DATE	DRAWING NUMBER: CMSG - 10A	REV 9
Phase 2 Freez (1435mm) Mesos, No.327, Anna Salas, Nandanan, Cheves-800005, No.327, Anna Salas, No.327, No		CHECKED	SECTION WITH SHARPEST CURVE AND MAX.CANT-DERAILED CONDITION (R200m, CANT 120mm) (OUTWARD)			
CHENNAI METRO RAIL LIMITED	STANDARD GAUGE	GENERAL MOTES		APPROVED	KE OF DERAILED VEHICLE FOR TUNNEL	A3

CIRCULAR TUNNEL 5800 mm DIA

Budeep Kor. Michora

2.AFTER DERAILMENT CLEARANC OF KE TO TUNNEL WALL #129MM (FOR MID THROW)

3 LATERAL CLEARANCE BETWEEN RUNNING RAIL AND DERAILMENT GUARD FOR DOUBLE RESULENT BASE PLATE ASSEMBLY FASTENING SYSTEM 250+20MM. LATERAL GLEARANCE FOR WORST CASE=270MM

4 KINEMATIC ENVELOPE CONSIDERED AS PER CMSG-1(TNL)

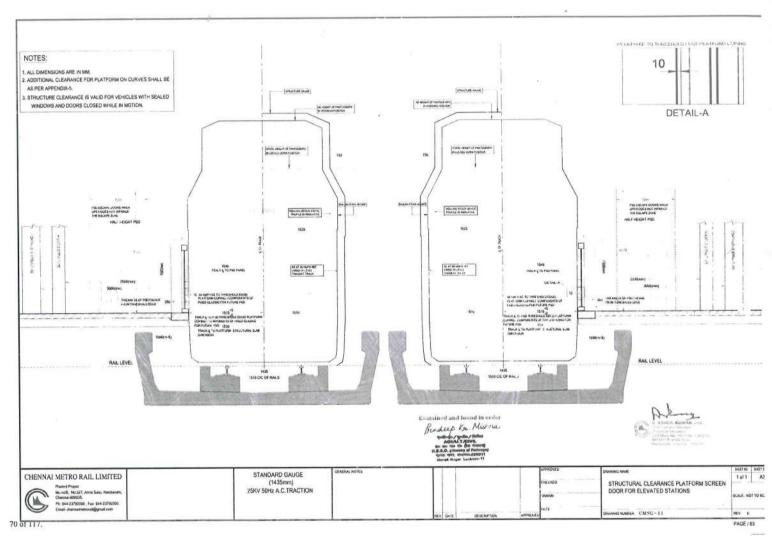
5.WORST CASE RADIUS =200M, CANT =120MM, SPEED= 55 KMPH MIID THROW 142.5MM (APPENDIX-2A)

6 X&Y BEEN SHIFTED IN ACCORDANCE WITH FORMULA IN FIGURE CMSG-3

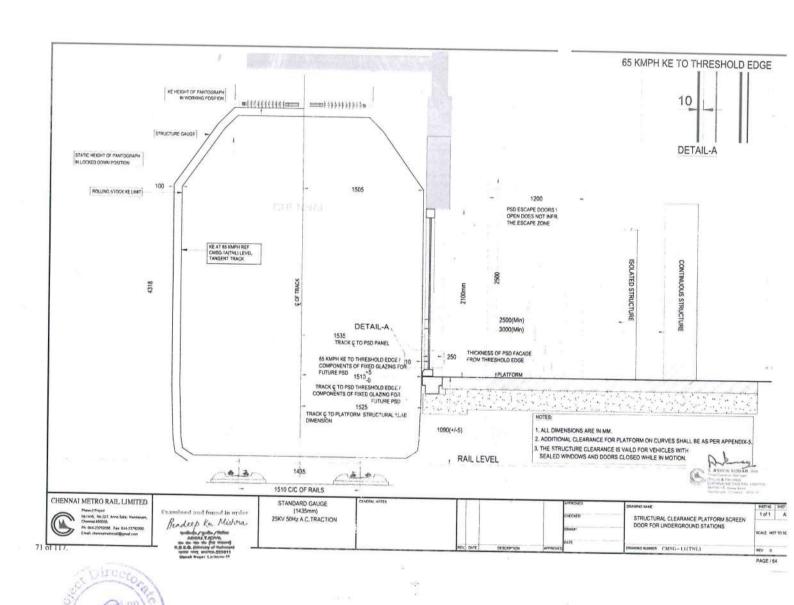
7.THE LATERAL SHIFT DUE TO DERAILMENT IS 218.5MM (270MM-51.5MM)

KINEMATIC ENVELOPE POSITION IN DERAILED CONDITION INSIDE OF CURVE

CHENNAI METRO RAIL LIMITED


STANDARD GAUGE (1435mm) 25KV 50Hz A.C.TRACTION

KE OF DERAILED VEHICLE FOR TUNNEL SECTION WITH SHARPEST CURVE AND MAX.CANT-DERAILED CONDITION (R200m CANT 120mm) (INWARD)


DRAWING NUMBER; CMSG-10H

PAGE / 62

