INDIAN RAILWAYS

Moving towards "Net Zero Emission"

ENVIRONMENTAL SUSTAINABILITY

ANNUAL REPORT 2020-21
Indian Railways
Moving towards “Net Zero Emission”

ENVIRONMENTAL SUSTAINABILITY
ANNUAL REPORT
2020-21
ENVIRONMENTAL SUSTAINABILITY (ANNUAL REPORT 2020-21)

INDIAN RAILWAYS
ENVIRONMENT MANAGEMENT

VISION

To promote Green environment and clean energy while making the Indian Railways a global leader in sustainable mass transport solutions.

MISSION

★ To promote energy conservation measures.
★ To maximize the use of alternate forms of clean energy, thereby minimizing the carbon footprint of Railways.
★ To provide clean and hygienic environment to customers.
★ To promote conservation of water and other natural resources.
★ To march towards Zero waste discharge from the major Railway units.
★ To promote Green built-up spaces and expand tree-cover.
★ Building in house capacity to set up an effective Environment Management System.
★ Noise reduction in Railway operations.
भारतीय रेल
पर्यावरण प्रबंधन

विजन
भारतीय रेलवे को व्यावहारिक दृष्टि से रिवाज समाधान के क्षेत्र में ग्लोबल लीडर बनाने से रूप से हरित पर्यावरण तथा स्वच्छ ऊर्जा को बढ़ावा देना।

मिशन
★ ऊर्जा संरक्षण उपायों को बढ़ावा देना।
★ स्वच्छ ऊर्जा के वैकल्पिक स्वरूपों का अधिकतम उपयोग करना, जिसके परिणामस्वरूप रेलवे में कार्बन फुटप्रिंट को न्यूनतम करना।
★ ग्राहकों को स्वच्छ एवं स्वास्थ्यपरक पर्यावरण उपलब्ध कराना।
★ जल और अन्य प्राकृतिक संसाधनों के संरक्षण को बढ़ावा देना।
★ प्रमुख रेलवे इकाईयों से कचरे का उत्सर्जन न होने देने का प्रयास।
★ हरित निर्माण तथा छायादार वृक्ष-क्षेत्र को बढ़ावा देना।
★ प्रभावी पर्यावरण प्रबंधन प्रणाली स्थापित करने के लिए संगठन के भीतर क्षमता विकसित करना।
★ रेलवे परिचालन में ध्वनि प्रदूषण को कम करना।
Chapters

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Indian Railways –working for Carbon Neutrality</td>
<td>7</td>
</tr>
<tr>
<td>2.</td>
<td>Reducing Global Carbon Footprints</td>
<td>8</td>
</tr>
<tr>
<td>3.</td>
<td>Conference of the Parties to UNFCCC</td>
<td>10</td>
</tr>
<tr>
<td>4.</td>
<td>Energy Efficiency in Mass Transportation System</td>
<td>11</td>
</tr>
<tr>
<td>5.</td>
<td>Energy Conservation Initiatives</td>
<td>16</td>
</tr>
<tr>
<td>6.</td>
<td>Harnessing Renewable Energy</td>
<td>19</td>
</tr>
<tr>
<td>7.</td>
<td>Alternate Fuel and Clean Energy initiatives</td>
<td>21</td>
</tr>
<tr>
<td>8.</td>
<td>Water Conservation</td>
<td>26</td>
</tr>
<tr>
<td>9.</td>
<td>Afforestation</td>
<td>28</td>
</tr>
<tr>
<td>10.</td>
<td>Green Industrial Units</td>
<td>29</td>
</tr>
<tr>
<td>11.</td>
<td>Other Green Built-up Spaces</td>
<td>31</td>
</tr>
<tr>
<td>12.</td>
<td>Bio Toilets</td>
<td>37</td>
</tr>
<tr>
<td>13.</td>
<td>Solid Waste Management</td>
<td>40</td>
</tr>
<tr>
<td>14.</td>
<td>Other Green Initiatives</td>
<td>42</td>
</tr>
<tr>
<td>15.</td>
<td>Policy Initiatives of IR towards Environmental Sustainability</td>
<td>45</td>
</tr>
</tbody>
</table>

Some important Waste Management Rules
Indian Railways—working towards carbon neutrality

Indian Railways (IR) is one of the world’s largest rail networks, spread over 68000 route Km. IR is the lifeline of the country carrying nearly 23 million passengers every day making it the largest passenger carrying system in the world. It is also the 4th largest freight transporter in the world moving 1233.23 MT of freight in 2020-21 (an increase of 1.9% over 2019-20), as it traverses the length and breadth of the country.

Rail-based transport is the most environment friendly mass transport system due to the inherent gains it provides in terms of energy efficiency and resource optimisation. Railways are about 12 times more efficient in freight traffic and 3 times more efficient in passenger traffic as compared to road transport. As the Indian economy transitions, with economic growth and sustainable development as twin goals, mobility will play a key role. It has been estimated that for the sustainable development of Indian Economy, the inter-modal share of freight traffic by rail should go up from the current share of 36% to 45% by 2030. Accordingly, Indian Railways is gearing up for a massive growth to achieve such increase in inter-modal share by augmentation of its network and rolling stock fleet along with increase in productivity.

For IR to be a low carbon mass transport system working for a green environment, an integrated approach, which includes resource efficiency at its core, will be critical.

As the country’s lifeline, the national transporter, in January 2015, set up the Environment Directorate in the Railway Board, to coordinate all environment management initiatives across the Indian Railways. Since then, the Railways has taken steps to streamline its initiatives with regards to environmental management, with some notable initiatives including Energy Efficiency Management, Renewable and Alternate sources of Energy, Water Conservation, Afforestation, Waste Management and Green Certifications.
India has a population of over 1.3 billion people spread over a vast geography. Mobility will play key role with urbanisation and the growth of cities. The transport sector is and will continue to remain a critical enabler of development and would also have to grow in a sustained manner for the country to meet its developmental objectives.

Transport accounts for more than half of India’s total petroleum consumption and more than 25% of the overall energy needs. It accounts for about 13% of the total GHG emissions. Given the relative advantage of the efficiency of rail-based transport, increasing the share of rail for both passenger movement (regional, sub-urban and urban) and freight movement is vital for increasing the energy efficiency of the transport sector thereby, reducing the GHG emissions of the country.

2.1 Nationally Determined Contributions (NDCs)

The Government of India, as part of its Nationally Determined Contributions (NDCs), has set a target of 33% emissions intensity reduction, with the transport sector being one of the key sectors with substantial mitigation potential.

The India’s Nationally Determined Contributions (INDC) document submitted by India in October 2015, was widely discussed at the 21st Conference of Parties (COP21) organized by the UNFCCC in Paris, in November 2015. The Energy & Research Institute (TERI) also supported the Ministry of Railways, the nodal ministry for India’s transport sector dialogue, to set up the Government of India’s official transport sector event at COP21.

The INDC was ratified by India the following year, and India now had an officially mandated target of activities for meeting its INDC commitments for 2030.

One of the most vital transportation emissions mitigation strategies agreed to by the Government of India was increasing the share of Indian Railways in the movement of freight from the current ∼35-36% to 45% by 2030.

Conference of Parties to the UNFCCC in its sixteenth session (COP-16) had decided that developing countries should also submit Biennial Update Report (BUR) as an update to the most recently submitted national communication. India furnished its first Biennial Update Report (BUR-1) in January 2016, second Biennial Update Report (BUR-2) in December 2018, and the third BUR-3 was submitted on 20th February, 2021.

2.2 IR’s role in India’s NDC towards combating Climate Change

- To enhance the share of the Railways in the overall land based freight transport from the present 36% to 45% by the year 2030.
- Indian Railways is setting up Dedicated Freight Corridors (DFCs) across the country. The first phase of the project alone is estimated to reduce emissions by about 457 million ton CO2 over a 30 year period.
- Increase the share of renewable energy in its energy mix.
- Railways to further improve its energy efficiency for both diesel and electric traction thereby facilitating the reduction of GHG emissions for the country.
- PAT Scheme to be implemented in railway sector.
- Use of 5% blending of biofuels in traction diesel fuel.
- Improve water use efficiency by 20% upto 2030.
- Tree Plantation to increase Carbon Sink.
- Waste Management and Pollution Control
- Adopting the good practices on Green Buildings, Industrial Units and other establishments for the management of resources and infrastructure to achieve Environmental Sustainability in growth of IR.
- Contribution in ‘Swachh Bharat Mission’
- IR has set a target of becoming a “Net Zero” entity by 2030 by completing electrification of all railway tracks.
Climate change has widespread impact on human and natural systems. Accordingly, Climate Change Conferences are held annually in the framework of the United Nations Framework Convention on Climate Change (UNFCCC). India, through Ministry of Environment, Forests and Climate Change (MoEFCC) has been participating in these conferences.

A decisive step to address the issue was taken with the adoption of the Paris Agreement in Conference of Parties (COP-21) in December 2015. Participating countries submitted near-term targets to address GHG emissions, called ‘Nationally Determined Contributions’ or NDCs to be reviewed and extending the targets every five years. Ministry of Railways was designated as Nodal Ministry by MoEFCC for holding event on ‘Transport Sector GHG Emissions’ at ‘Indian Pavilion’ as part of COP-21 at Paris, France.

Ministry of Railways have been a regular participant in COP-22 held at Marrakecha Morocco in November 2016, COP-23 at Bonn, Germany in November 2017 and COP-24 at Katowice, Poland in December 2018. Sessions on sustainable transport network were organised at India Pavilion. 25th UNFCCC conference of parties was held at Madrid, Spain from 10th to 13th December, 2019. 26th COP summit was organized at “Glasgow” wherein India has committed to be a “Net Zero” Carbon emitter by 2070 and bring its non-fossil energy capacity to 500 GW by 2030. India aims to bring its economy’s carbon intensity down to 45 per cent and to fulfill 50 per cent of its energy requirement through renewable energy by 2030. India will reduce 1 billion tonnes of carbon emissions from the total projected emissions by 2030. Indian Railways being a mass transporter have an important role to play in fulfilling these targets.

Ministry of Railways participated in the session hosted by CII at India Pavilion on “Practices in Indian Railway Transport and Automobile Sector towards climate mitigation”. A short video film on development and benefits of dedicated freight Corridors for increasing the modal share of Railways in freight transportation was also played.
4.1 Advances in Energy Efficiency in Electric Traction

Introduction of energy efficient Three Phase locomotive technology is expected to reduce 500 tonnes of CO2 annually. These locomotives are equipped with regenerative braking feature capable to regenerate electricity during braking action which is fed back to grid.

Regenerative braking feature has been developed in Conventional Electric Locomotive WAG7 also and first such locomotive was turned out from BHEL Jhansi in February 2019.

First, made in India 12000 HP WAG12 electric locomotive has been manufactured by Madhepura Electric Locomotive Pvt. Ltd. (MELPL). This is a state of the art IGBT based, 3 phase drive and 12000 horse power electric locomotive equipped with regenerative braking system which provides substantial energy savings during operations. These high horse power locomotives will help to decongest the saturated tracks by improving average speed and loading capacity of freight trains. Upto 2020-21, around 100 such locomotives have been inducted by Indian Railways. These locomotives have already clocked over 4.8 million kilometres hauling a wide range of commodities across 17 States and 2 Union Territories.

Additional Achievements

- Fitment of 1000 kVA Hotel load converters to supply electricity for train lighting, air-conditioning and for pantry cars.
- All electric locomotives are provided with Energy cum Speed Monitoring (ESMON) systems for monitoring the performance of Loco Pilots with respect to energy conservation.
- Loco Pilots are being encouraged for maximum use of regenerative brakes on three phase electric locomotives for reducing traction energy bill.
- Energy consumption and energy regeneration in each trip by individual crew is being monitored through Crew Management System.

4.2 Advance in Fuel efficiency in Diesel Traction

a. **Auxiliary Power Unit (APU)** has been provided in 1161 Diesel Locomotives to save fuel during idling. In APU system, the Main Engine shuts down and a small 25 HP Engine starts for charging batteries and air brakes pipes, when loco idles for more than 10 min. APU consumes only 5 litres of diesel per hour in comparison to 18 litres by the main engine. Besides fuel saving, there would be a reduction in lubricating oil consumption and wear and tear of the main engine. It also results in lower CO2 emission and other pollutants like HC, NOx, CO etc.

b. **Computerize Fuel Management System (FMS)** has been developed and RCDs have started daily entry of all High Speed Diesel (HSD) issuance and receipt data in the FMS system. The system is being strengthened for real time data entry. This strengthens the data analysis to help in regulating diesel consumption for traction purpose.

c. **Diesel Consumption reduction**- IR has witnessed a 7.5% reduction in diesel consumption for traction in 2019-20 as compared to 2018-19 due to increase in Electrification. This has resulted in savings to the tune of Rs 1780 crore as compared to the last year.

d. **Reduced Carbon Emission**: IR has taken up the task of further reducing the emission for diesel locomotives and to standardize them in line with the international emission practices. Diesel Locomotives for Indian Railways are now being manufactured only at Diesel Locomotive Factory/Marhowra and these locomotives comply with UIC-624-I Emission Standards.

e. **Dual-mode Locomotive** - There are large numbers of stations/ yards/ sidings, where traction change takes place over IR due to mix of diesel and electric tractions. With modern electronics, it is much easier to build an electro-diesel locomotive (Dual mode), which is equally capable of running at designated speeds both on electrified and non-electrified territory. In the event of major accident or natural calamities like cyclone and disturbed areas where OHE gets affected, dual mode loco will provide excellent operational flexibility to work on diesel until the normalcy is established. A dual mode loco design has been developed by RDSO. Prototype Dual mode locomotive has been made ready at DLW, Varanasi in March, 2020. It would now be taken up for requisite operational and safety trials.

4.3 Improving Energy efficiency with trailing Rolling Stock Containerisation:

The design of BLCS has been operationalized and about 10 rakes have been manufactured and put in service.

Innovative design of portable frame has been provided to allow 6-feet containers on one BLC type wagon. This will facilitate movement of 2 & 3 – Wheelers at about 20% lower cost of transportation.
12 feet high domestic containers for low weight and voluminous cargo like FMCG, paper, furniture has been approved to enable shift of this premium traffic from road to rail.

25 feet containers have been approved on BLL-Wagons to optimally utilize capacity with 20-feet & one 25-feet container for this wagon design.

- BFNV wagon developed for carrying steel coils. Oscillation trials successfully conducted for operation at 100/75 kmph over IR & 100/100 kmmps over DFC at 22.9t axle load.
- BOBSNS Wagon: Prototype has been manufactured and oscillation trails planned to provide 11% increase in rake throughput over existing wagons.
- BCFCM: Oscillation trials in progress. 8% increase in throughput over BCCW for carrying flyash/cement.
- BCPVN Wagon: Prototype manufactured. Oscillation trials successfully completed for 100/100 kmph. The wagon uses bogie and has 30% more volumetric capacity than existing ICF Parcel Vans.

Coaches

Improved design Stainless Steel Coaches provide higher carrying capacity. With increasing share of such coaches, PKM to GTKM ratio will improve resulting in reduced GHG emissions for carrying the same passenger traffic. Despite COVID-19 pandemic, total number of 4323 LHB coaches were manufactured by the 3 Production units of IR – ICF Chennai, MCF Raebareli and RCF Kapurthala in 2020-21 as against total 6277 in 2019-2020, 4429 in 2018-19, 2480 in 2017-18 and 1469 in 2016-17.

4.4 Train Sets

India’s first semi high speed train set manufactured under ‘make in India’ programme by ICF during 2018-19, Train-18 is an energy efficient train. It has been provided with 3-phase IGBT based under slung propulsion equipments, has advanced regenerative braking system and need for power car is eliminated. Such features help in saving energy up to the tune of 30%. Further the aerodynamic profile of the train also helps to reduce air drag and thus reduce energy consumption. Two such train sets are presently running in Northern Railway.
Vistadome coaches provide panoramic view, through wider body side windows as well as through transparent sections in the roof, thus enabling the passengers to enjoy the scenic beauty of the places through which they travel. Presently 36 Vistadome coaches are available over IR.

7 LHB type BG Vistadome coaches have been manufactured in 2020-21 by ICF, one of which was used in Ahmedabad-Kewadiya Jan Shatabdi.

IR has planned to introduce AC-III tier Economy Class to cater to the needs of general masses. A layout for LHB AC-III Tier Economy Class Coach with 83 berths has been approved and prototype turned out in 2020-21. Manufacturing of 806 such coaches is proposed in Production Plan 2021-22.

4.5 EMU/MEMU

- Induction of energy efficient 3 phase IGBT based propulsion system with regenerative braking feature have been introduced way back and same has been continued as detailed below:

- 3-Phase Air Conditioned (AC) EMU : In 2020-21, 3AC EMU rakes of 12 car equipped with energy efficient 3 phase propulsion system with regenerative braking feature have been introduced over IR.
3-Phase AC EMU: 3 air conditioned EMU rakes of 12 car equipped with energy efficient 3-phase propulsion system with regenerative braking feature in Mumbai suburban (1-CR and 2-WR) has been turned out and commissioned.

3-Phase MEMU: During 2020-21, 48 MEMU rakes of 8 cars with energy efficient 3 phase propulsion system with regenerative braking feature have been introduced in service.

3-Phase Kolkata Metro: During 2020-21, 4 Kolkata Metro rakes of 8 cars equipped with energy efficient 3-phase propulsion system with regenerative braking system have been introduced in service.

Energy efficient LED based Twin Beam head lights are being used in EMU/MEMU.

4.6 Head on Generation system

The LHB trains running in End on Generation (EoG) configuration require power cars equipped with Diesel Alternator (DA) sets for feeding air conditioning, train lighting and other electrical loads in the coaches. Each such train has two power cars, each power car having 2 DA sets. This system has inherent disadvantage of air and noise pollution. In HOG system power is drawn through converters provided in locomotives. The electrical power drawn by the pantograph of the locomotive is suitably converted and supplied for air conditioning, train lighting and other electrical loads in the train. All LHB coaches have been made compliant during 2020-21. Now, 1410 trains have been made compliant to HOG, resulting in reduction in diesel consumption.

4.7 Capacity Augmentation & Network Expansion

IR has developed a National Rail Plan 2030 with the aim of making IR future ready by 2030 to create capacities for handling projected traffic requirements of upto 2050. NRP targets reducing transit time of freight substantially to divert road traffic which is a major polluter towards Railways. 1160 RKM of Dedicated Freight Corridor have been completed by 31st March 2021.
Energy Conservation Initiatives

Given the massive scale of its operation, it is not surprising that the Indian Railways has a growing appetite for the consumption of electricity. Indian Railways consumes nearly 20 billion kWh of electricity annually, comprising around 2% of the country’s total power consumption. With rail traffic projected to register an increasing growth in the coming years, it is estimated that the demand for electricity by the Indian Railways will go up over the next decade.

5.1 Indian Railways has taken a series of measures to cut down its energy consumption and rationalise its energy procurement process by implementing several energy conservation measures, procurement of power under Open Access and harnessing Renewable Energy. Railways also carry out regular energy audits at consumption points. Use of 5 Star rated electrical equipment is emphasised.

5.2 100% LED lighting

- All railway stations, service buildings & residential quarters have been provided with 100% LED lights.
- One time LED provision being done in all residential quarters (about 5 lakhs quarters) has been done.
- 100% LED across Railway installations will reduce about 10% of total energy being utilized on its Non-traction thus leading to savings of about 240 million units of electricity i.e. savings of Rs 180 Cr. per annum.
- IR has been consistently trying to improve the illumination levels at various stations. 143 railway stations were provided with improved illumination in 2020-21. A total of 978 Railway stations have now been provided with improved illumination till 31.3.2021.
- Under PAT-II Cycle, Railways earned 1,18,790 ‘Escerts’ to the tune of approx Rs. 5.3 crores.

5.3 Star rated buildings Certified by Bureau of Energy Efficiency (BEE): 50 buildings (including 4 Divisional Hospitals) have been given Star rating by BEE. IR has bagged 14 National Energy Conservation Awards (NECA) in 2020 in 03 categories.

5.4 LED lights in coaches

Zonal Railways have been replacing CFL/FL lights in TL/AC and self-propelled (EMU/MEMU) coaches with energy efficient LED lights. During 2020-21, 11250 coaches have been provided with energy efficient LED lights (cumulative 63500 coaches). All newly manufactured coaches from production units are being turned out with LED light fittings. On an average there is a saving of around Rs. 6000/- per coach per annum.

5.5 Energy Efficiency Study Initiatives of IR

- To facilitate Indian Railways and Confederation of Indian Industry (CII) to work together on Green Rating and Energy Efficiency studies of IR’s Production Units and major Workshops, a
Memorandum of Understanding (MOU) was signed between IR and CII on 26th July 2016 for a period of 3 years. New MoU was signed with CII on 13th Sept 2019 for Facilitation of Green initiatives on IR for another 3 years.

- Energy Efficiency studies were completed in six PUs (RCF, ICF, RWF, DLW, CLW, DMW) and 4 workshops (JUDW, JHS, JMP, GOC) under MOU with CII in 2017-18 in first phase. In second phase, Energy Efficiency studies for 10 additional units - 2 PUs (MCF, RWP) and 8 workshops (BPL, LLH, UBL, AMV, All, RSK, KGP) were taken up which have been completed in 2019-20. 7% to 15% energy efficiency improvement has been achieved.

The activities included:

- Identification of significant energy saving opportunities in the facilities.
- Awareness workshops and training programs on the technological aspects of energy efficiency, and the best practices adopted by related Indian industries.
- Organising visits of IR officials to some of the best performing units in similar sectors, such as automobile and engineering. Visits to J K Tyre, Chennai (May 2019) and Hero MotoCorp, Gurgaon (Feb 2020) were organised in 2019-20.
- Identification of potential technology suppliers who can offer energy saving technologies to the units.
- Organization Energy Efficiency Award for the Indian Railways on the sidelines of the Annual CII Energy Efficiency Award, to felicitate the best performing units.
- Continuous hand holding of the IR units to guide them in the implementation of energy efficiency measures.

The activities led to implementation of more than 250 energy efficiency and renewable energy measures / projects, resulting in an estimated energy saving of 21 million units annually, translating into monetary savings of Rs16 crore and a reduction of 17,400 tCO2 emissions per annum. Some of the energy efficiency measures implemented are:

- Optimising pressure settings and distribution / circulation of compressed air as per requirement.
- New energy efficient Screw Compressor to optimize the compressed air power consumption.
- Small blower/LP compressors for aeration in de-greasing tanks etc.
- AC energy saver which provides dual sensors to measure both room and coil temperatures as feedback, and its multiple algorithm in the closed-loop circuit adapts the AC to ambient temperatures and climatic changes to ensure energy saving.
- Regenerative drive system for EOT cranes.
- Power factor improvement by installing additional automatic power factor correction systems where power factor was 0.90 - 0.95.
- Daylight Pipes.
Harnessing Renewable Energy

- Indian Railways being a significant consumer of energy, identifying cost-effective options to achieve and realizing an energy system with least environmental impacts is essential. Indian Railways has been taking several steps to install clean and efficient energy.

- Vision 2020 document of the Indian Railways states that the key target is to utilize at least 10% of its energy requirement from renewable sources.

- As a part of this, Indian Railways has planned to set up:
 - 1000 MW solar power plants, and
 - about 200 MW of wind power plants across Zonal Railways and Production Units.

6.1 Harnessing Solar Energy on IR:

Indian Railways have planned to set up:

- 500 Mega Watt (MW) solar plants on roof top of Railway buildings through developers with 25 years PPA by Railways, which will be used for meeting non-traction power supply loads at Railway Stations etc. 113 Mega watt capacity has been commissioned till 31.03.2021.

- 3 MW land based solar plant was commissioned in MCF Raebareli.

- RUMS (400 MV) (under Optimum Scheduling Mode)-400 MW land based solar power plant tied up with Rewa Ultra Mega Solar, a joint Venture of M.P. & SECI.

- IR is also taking up following pilot projects for feeding solar power directly to 25 kV AC traction system.
 - Bina Solar Project (1.7 MWp) through BHEL: Plant commissioned in July’2020.
 - Bhilai (50 MWp) – Work awarded and under progress.
 - About 17.93 MW of Solar plants (14.23 MW rooftop + 3.7 MW land) have been commissioned in 2020-21. Till 31.3.2021, about 120 MW of solar plants (113.3 MW of rooftops + 6.7 MW on land) have been commissioned.

6.2 Solar Plants along the Railway Track for Traction purpose

Indian Railways has planned to utilize its unused vacant Land parcels for setting up of Land Based Solar Plants for its traction power requirement as ‘Green mode of transportation’ and become a ‘Net Zero Carbon Emission Railway’ by 2030. The plants will be set up on unused vacant land. There is about 51,000 hectare of Railway land which has a potential of installing 20 GW land based solar plants. The Solar power so generated will be fed to CTU/STU Grid or directly to 25 kV AC traction system.
6.3 Harnessing Wind Energy over IR:

- Out of 200 MW target of IR, 103.4 MW wind-based power plants have already been installed.
- Wind based power plants of 10.5 MW (for non-Traction) and 10.5 MW (for Traction) capacity in Tamil Nadu, 26 MW (for traction) capacity in Rajasthan, 6 MW (for non-traction) and 50.4 MW (for traction) capacity in Maharashtra have been installed.

6.4 100% Green Powered Station

25 Railway stations have been made “Green Stations”, which are meeting their energy needs completely either through Solar or by Wind. Railways are making extensive efforts in this direction to make more and more stations 100% green powered stations.

100% LED lighting at all Railway Stations, Service buildings & Residential quarters has been provided.

Regular energy audits at consumption points.

Under PAT-II Cycle, Railways earned 1,18,790 ‘Escerts’ to the tune of approx. Rs.5.3 crores.

6.5 Accolades earned by Indian Railways

National Energy Conservation Awards (NECA): The continuous efforts of Ministry of Railways and Zonal Railways to embrace various energy efficient technologies and energy conservation measures had resulted in bagging 14 National Energy Conservation Awards (NECA) in 2020 in 03 categories.
Alternate Fuel and Clean Energy initiative

7.1 Blending of Bio-diesel with HSD

The Bio-based fuels produced from renewable biomass and other natural products present complete carbon neutrality as CO2 generated by burning these fuels is captured again by trees and plants thus eliminating the adverse environmental impact. The pollutants created by burning of the conventional fossil fuels arising from Sulphur and other harmful elements contained in fossils fuels are absent in Bio-fuel which results in much lower emission. The substitution of H.S.D with bio-diesel results in reduction of 44% hydrocarbon (HCCs), 89.3% reduction of carbon mono oxide (CO) and no sulphur content in exhaust. Indian Railways started 5% Bio-Diesel blending with HSD on 5th June 2015. Blending of Bio-Diesel to the extent of 5% has commenced at 76 RCDs of Indian Railways in different Zones.

To arrange Bio-Diesel in-house IR is setting up Two 30Ton per day (TPD) capacity plants at Tondiarpet /Chennai and Raipur /Chhattisgarh. These two plants will meet 15-20% of total requirement of blending of HSD on IR. Palm oil, jatropha oil, cotton seeds oil, used cooking oil, animal fat etc. can be used as raw material to produce Bio-Diesel in these plants. The construction of plant at Tondiarpet is at advance stage.

7.2 CNG/LNG based Dual Fuel Diesel Engines for DEMU Trains

Natural Gas usage emits less GHG than liquid fuels due to fewer Carbon atoms in its molecular structure.

Indian Railways have the distinction of being the only Railway in the world to be using CNG run locomotives for passenger transportation with implementation of CNG based dual fuel fumigation technology on CNG DEMUs DPCs of 1400 hp to achieve up to 20% substitution of Diesel. 25 Diesel Power Cars of DEMUs have been converted into CNG based dual fuel engine at Shakurbasti and Vijayawada Diesel Sheds.
7.3 Solar Energy based solutions for Rolling Stock of Indian Railways

7.3.1 Solar Energy based solutions for Passenger Services

The trailer coaches of one rake of 1600 HP DEMU were initially provided with Solar PV system at its roof which takes care of electric supply for the fan and lighting load inside the coach. This result in

- Saving of 5.25 Lakh Litres of Diesel
- Cost saving of Rs. 3 Cr
- Reduction of 1350 Tons of CO2 per train over life time of 25 years.
The operation of this rake was inaugurated on 14th July 2017 by the then Minister of Railways Shri Suresh Prabhakar Prabhu. 14 nos. solar coaches are based at Shakurbasti, NR.

The trailer coaches (06 nos.) of one rake of 1400 HP DEMU at Jamalpur have been provided with solar PV panels.

7.3.2 Provision of Solar Panels on Swachhta Express

Solar Panels of 4.5 KWp capacities each have been installed on 10 Coaches of Swachhta Express, which is capable of producing 10 KWh per day for electric supply to lights and fans inside the coach. Swachhata Express is an exhibition train to showcase the achievement of Swachh Bharat Mission.

7.3.3 Solar Energy based solution for guards of freight trains

IR has done successful trial of electricity generation from Solar PV modules for Guard comfort system on 50 BVZI wagons used on freight trains. A 400 Wp Solar PV system with batteries has been provided on each guard van to supply round the clock electricity for fan, light and a charging point to the guards who have until now worked without these facilities. E-tender for provision of Guard Comfort Kits for 700 BVZI/BVCM wagons is being processed for further proliferation.

Hybrid system with PV Solar panels and fuel cell, is being planned for 300 nos. brake vans to provide un-interrupted electric supply.
7.4 Solar Panels on Workshops and Stations

Solar PV Plant of 2 MWp capacity at roof top of DMW Patiala was arranged and commissioned successfully under CAPEX through BHEL, to meet approx. 25% of annual requirement of electricity at DMW.

7.5 Use of Natural Gas in Workshops/ Production Units/ Railway premises

CNG is an environment friendly alternate fuel for metal cutting as compared to Dissolved Acetylene (DA) or BMCG. It also has higher thermal efficiency. Matunga Workshop of CR and Kota Workshop of WCR coordinated to switch over to the use of CNG for metal cutting, thereby not only improving sustainability but also saving about Rs 1 crore per annum. RWF/Yelahanka also commenced the use of Natural Gas for operation of its furnaces. RWF has reported a saving of 420 KL of HSD as furnace oil per month.

An MoU has been signed between IR and GAIL on 30.08.2018 to streamline the system and develop infrastructure for use of Natural Gas in IR. DLW, Varanasi and RYPS and LGD workshops in SCR are in the process of this change.

To extend the use of Natural gas through Pipes and save the LPG for Ujjwala Scheme, the facilities have been developed by GAIL and its subsidiaries in Bhubaneswar, Badhwar Park and DLW Railway colonies and NAIR. Surveys have been conducted by GAIL subsidiaries at Jhansi, Parel, Lower Parel, Jamshedpur and Danapur townships.

7.6 Fuel Cell Technology-

Indian Railways is pioneering development of Technical Specifications for manufacture of Hydrogen Fuel Cell Powered Rolling Stock (DPRS) with regenerative braking system. The new technology envisages zero emissions with water as net exhaust. IR will be using DEMU platform for developing this technology. Retrofitment of 2 nos. DEMU rakes for conversion to hydrogen fuel power mode in Sonipat-Jind section of Northern Railway is in process.
The feasibility of using Hydrogen Fuel Cell Technology for Locomotives of Hill Railways such as Kalka-Shimla, DHR- Matheran etc. is being explored with potential technology providers, RDSO.

7.7 Fuel Cell assisted Green Power Unit for 300 BVZI:
A new venture for using methanol fired direct fuel cell for powering brake vans in consultation with industry is being pursued.

7.8 Battery Powered Ventilators for Rajdhani/Shatabdi Train -
A pilot project has been taken up for providing Battery powered ventilator system in Rajdhani/Shatabdi coaches. This shall endeavour replacement of power car thereby making room for attachment of a passenger coach.
Shortage of water in India is becoming a very serious issue. The tube wells drilled are lowering water tables in most parts of the country. This problem gets further compounded in areas where rain fall is poor. To overcome this problem, Railways have taken initiative in Rain Water Harvesting (RWH), Water Recycling Plant (WRP), Water Audits and Water bodies.

8.1 Water Recycling Plants

Water Recycling Plants (WRP) are being provided at major consumption centre locations (stations /sheds etc) where there is heavy demand for water and provision of same is economically justified. 106 Water Recycling Plants were set up on Indian Railways up to November 2021. For the year 2021-22, a target of installing 32 WRPs have been set across Zonal Railways.

10 Automatic Coach Washing Plants (ACWP) have been installed over Indian Railways during 20-21. Automatic Coach Washing Plants are provided with water recycling plants and thus reduce water consumption during exterior cleaning of coaches. A total 50 ACWPs have been installed over Indian Railways.

8.2 Water Bodies

Ministry of Railways has decided to assess and review the Water Bodies existing in the Railway Land including the ones which are presently non-functional and take action to ensure that all the existing Water Bodies are protected and nurtured and Water Bodies which are non-functional are restored early. As on March 2021, a total of 1591 Natural water bodies are functional on Indian Railways. 44 water bodies have been restored. The water bodies in the form of pond are also being utilised for fisheries purpose on commercial terms.

Revival of 200 year old Salarjung well at Hyderabad yielding average 2.5 lakhs litres water per day is an example worth emulating.
8.3 Water Audit

To minimize water wastage, Zonal Railways have been asked to conduct water audit at major water consumption centres through third party for quality as well as quantity and to take up Works of water recycling plants based on the report of water audit. For the year 2020-21, 728 Water Audit were completed.

8.4 Rain Water Harvesting (RWH)

To promote water conservation, Indian Railways have been providing Rain Water Harvesting (RWH) at various locations as per extant policy. In 2001, Railways were asked to adopt roof top rain water harvesting to recharge ground water especially in areas experiencing seasonal shortage of water and to take necessary assistance from Regional offices of Ministry of Water Resources. In 2013, it was decided that RWH scheme shall be an essential sub-set of all the project estimates related to constructions of built assets like service buildings, hospitals, stations buildings (including remodelling etc), Railway quarters, workshops/sheds, yard modelling as also in doubling, new line and gauge conversion and sidings. Installation of Roof Top Rain Water Harvesting is being monitored across all Railway Zones. With consistent effort of zonal Railways, 6618 nos of RWH system have been installed in Railways.

8.5 Water Policy

‘Water Policy’ for IR was issued in March, 2017 covering all aspects of water use efficiency, water recycling, conservation, recharge of ground water and restoration of water bodies.

8.6 Quick Watering Systems have been deployed over Indian Railways for watering of coaches at stations which helps to save water as it limits wastage.
Afforestation on vacant Railway land in between sections is carried out by Railway departmentally and also with a view to safeguard Railway land against unauthorized occupation.

In pursuance of Railways’ commitment towards environmental improvement and sustainable development, Forest Departments of the States are being involved in plantation as well as maintenance and disposal of trees, thus bringing in their expertise in afforestation. For this purpose, Ministry of Railways have finalised a model agreement in consultation with Ministry of Environment, Forest and Climate Change (MoEFCC) in January 2016 to be entered between Zonal Railways and respective State Forest Department for plantation of trees on Railway land along the Railway track and station yards without transferring the ownership of the land in favour of State Forest Department. As per this Agreement, plantation along the Railway track on railway land boundary can be done by Forest Department without declaring such land as protected forest and can be re-used by Railways at any time without any hindrance to Railway works/development projects. Cost of the plantation including its protection and maintenance can be borne by State Forest Department or Railway Administration or can be shared by both.

The agreement has already been finalised with State Forest Departments of Maharashtra, Haryana, Punjab, Assam, Andhra Pradesh, Chhattisgarh, Odisha and Karnataka.

Railways have planted around 5.48 crore saplings during the period 2016-17 to 2020-21.
10.1 GreenCo rating developed by Confederation of Indian Industry (CII) offers significant value addition and direction to organizations in terms of resource conservation, waste reduction, climate change mitigation, greener supply chain and superior environmental performance. It has been acknowledged in India’s Intended Nationally Determined Contribution (INDC) document, which was submitted to UNFCCC, as a proactive voluntary action undertaken by Indian private sector aimed towards combating climate change.

10.2 In order to facilitate IR and CII to work together on Green Rating and Energy Efficiency studies of IR’s Production Units and major Workshops, a Memorandum of Understanding (MOU) was signed between IR and CII on 26th July 2016 for 3 years. New MoU was signed with CII on 13th Sept 2019 for Facilitation of Green initiatives on IR for another 3 years.

10.3 Three Units, Diesel Locomotive Works (DLW) (GreenCo Silver), Lallaguda Carriage Workshop (GreenCo Silver) and Perambur Carriage Workshop (GreenCo Bronze) were certified by CII GBC as Green Units by March, 2017. 18 units were certified in 2017-18, 24 units in 2018-19, 8 units in year 2019-20 and 2 more units were certified during the year 2020-21.
10.4 Assessment areas for Green Certification
IR has taken the initiative of undertaking Green Rating Certification for different types of Railway establishments, including the industrial units. Such certification mainly covers assessment of parameters having direct bearing on environment, such as, energy conservation measures, use of renewable energy, impact on GHG emission, water conservation, solid and liquid waste management, green cover etc.

11.1 Green Buildings

Green Buildings are an effort to reduce the negative impact of buildings on the environment during its construction and use. The aim of green building is to minimize demand on non-renewable resources, maximize the utilization efficiency of resources, and maximize the reuse, recycling and utilization of renewable resources.

The rating systems in India like LEED, GRIHA, IGBC offer green rating for existing buildings as well as new buildings.

- Rail Nirman Nilayam, the construction organization HQ at Secunderabad was the first Green rated Building on Indian Railways when it achieved GRIHA ‘3 Star’ rating.

Status of Green Co Rating in Railway units

<table>
<thead>
<tr>
<th>SNO</th>
<th>Location Name</th>
<th>Place</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Modern Coach factory</td>
<td>Rae Bareilly</td>
<td>Platinum</td>
</tr>
<tr>
<td>2</td>
<td>Wagon Workshop</td>
<td>Guntupalli</td>
<td>Platinum</td>
</tr>
<tr>
<td>3</td>
<td>Carriage Repair shop, SCR, Tirupati</td>
<td>Tirupati</td>
<td>Gold</td>
</tr>
<tr>
<td>4</td>
<td>Diesel Loco Modernisation Works</td>
<td>Patiala</td>
<td>Gold</td>
</tr>
<tr>
<td>5</td>
<td>Mysuru Workshop</td>
<td>Mysuru</td>
<td>Gold</td>
</tr>
<tr>
<td>6</td>
<td>Jagadhri Workshop</td>
<td>Jagadhri</td>
<td>Gold</td>
</tr>
<tr>
<td>7</td>
<td>Diesel Loco shed, Moula ali</td>
<td>Hyderabad</td>
<td>Gold</td>
</tr>
<tr>
<td>8</td>
<td>Liluah, Workshop</td>
<td>Liluah</td>
<td>Gold</td>
</tr>
<tr>
<td>9</td>
<td>Pratap Nagar workshop</td>
<td>Pratapnagar</td>
<td>Gold</td>
</tr>
<tr>
<td>10</td>
<td>Railways - ICF / Chennai</td>
<td>Chennai</td>
<td>Gold</td>
</tr>
<tr>
<td>11</td>
<td>Golden Rock Workshop</td>
<td>Trichy</td>
<td>Gold</td>
</tr>
<tr>
<td>12</td>
<td>Ratlam Diesel Shed</td>
<td>Ratlam</td>
<td>Gold</td>
</tr>
<tr>
<td>SNO</td>
<td>Location Name</td>
<td>Place</td>
<td>Rating</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>13</td>
<td>Diesel loco Shed Kazipet</td>
<td>Kazipet</td>
<td>Gold</td>
</tr>
<tr>
<td>14</td>
<td>Diesel Loco Shed</td>
<td>Vatva</td>
<td>Gold</td>
</tr>
<tr>
<td>15</td>
<td>Wagon Repair Shop, Kota, WCR</td>
<td>Kota</td>
<td>Gold</td>
</tr>
<tr>
<td>16</td>
<td>Northern Railway Alambag Workshop</td>
<td>Alambagh</td>
<td>Gold</td>
</tr>
<tr>
<td>17</td>
<td>Charbagh Workshop</td>
<td>Lucknow</td>
<td>Gold</td>
</tr>
<tr>
<td>18</td>
<td>Diesel Locomotive Works / Varanasi</td>
<td>Varanasi</td>
<td>Silver</td>
</tr>
<tr>
<td>19</td>
<td>Carriage Workshop, Lallaguda</td>
<td>Secunderbad</td>
<td>Silver</td>
</tr>
<tr>
<td>20</td>
<td>Carriage Repair Workshop, Ajmer</td>
<td>Ajmer</td>
<td>Silver</td>
</tr>
<tr>
<td>21</td>
<td>Wagon repair Workshop, Nagra, Jhansi</td>
<td>Jhansi</td>
<td>Silver</td>
</tr>
<tr>
<td>22</td>
<td>Rail Spring Karkhana</td>
<td>Gwalior</td>
<td>Silver</td>
</tr>
<tr>
<td>23</td>
<td>Kharagpur Workshop</td>
<td>Kharagpur</td>
<td>Silver</td>
</tr>
<tr>
<td>24</td>
<td>Mettuguda Stores</td>
<td>Hyderabad</td>
<td>Silver</td>
</tr>
<tr>
<td>25</td>
<td>Diesel Loco Shed</td>
<td>Vizag</td>
<td>Silver</td>
</tr>
<tr>
<td>26</td>
<td>Kalka Workshop</td>
<td>Kalka</td>
<td>Silver</td>
</tr>
<tr>
<td>27</td>
<td>Bhavnagar Workshop</td>
<td>Bhavnagar</td>
<td>Silver</td>
</tr>
<tr>
<td>28</td>
<td>Rail Wheel factory, Yelahanka</td>
<td>Bangalore</td>
<td>Silver</td>
</tr>
<tr>
<td>29</td>
<td>New Bongaigaon Workshop</td>
<td>New Bongaigaon</td>
<td>Silver</td>
</tr>
<tr>
<td>30</td>
<td>Amritsar Workshop</td>
<td>Amritsar</td>
<td>Silver</td>
</tr>
<tr>
<td>31</td>
<td>Diesel Loco Shed, Gooty</td>
<td>Gooty</td>
<td>Silver</td>
</tr>
<tr>
<td>32</td>
<td>Diesel Loco Shed</td>
<td>Guntakal</td>
<td>Silver</td>
</tr>
<tr>
<td>33</td>
<td>Coach Rehabilitation Workshop</td>
<td>Bhopal</td>
<td>Silver</td>
</tr>
<tr>
<td>34</td>
<td>Eastern railway Workshop</td>
<td>Kanchrapara</td>
<td>Silver</td>
</tr>
<tr>
<td>35</td>
<td>Electric Loco Shed, Kazipet</td>
<td>Kazipet</td>
<td>Silver</td>
</tr>
<tr>
<td>36</td>
<td>Railways - Carriage Workshop / Perambur</td>
<td>Chennai</td>
<td>Bronze</td>
</tr>
<tr>
<td>37</td>
<td>Mechanical Workshop, Izzatnagar</td>
<td>Barielly</td>
<td>Bronze</td>
</tr>
<tr>
<td>38</td>
<td>Carriage Repair Workshop, Hubli</td>
<td>Hubli</td>
<td>Bronze</td>
</tr>
<tr>
<td>39</td>
<td>Mancheswar Workshop</td>
<td>Bhubaneswar</td>
<td>Bronze</td>
</tr>
<tr>
<td>SNO</td>
<td>Location Name</td>
<td>Place</td>
<td>Rating</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>40</td>
<td>Wagon Repair Shop</td>
<td>Raipur</td>
<td>Bronze</td>
</tr>
<tr>
<td>41</td>
<td>Carriage Workshop, Matunga</td>
<td>Mumbai</td>
<td>Bronze</td>
</tr>
<tr>
<td>42</td>
<td>Lower Parel workshop</td>
<td>Mumbai</td>
<td>Bronze</td>
</tr>
<tr>
<td>43</td>
<td>Dibrugarh Workshop</td>
<td>Dibrugarh</td>
<td>Bronze</td>
</tr>
<tr>
<td>44</td>
<td>Carriage Repair Workshop, Harnaut</td>
<td>Harnaut</td>
<td>Bronze</td>
</tr>
<tr>
<td>45</td>
<td>Ajmer Loco Workshop</td>
<td>Ajmer</td>
<td>Bronze</td>
</tr>
<tr>
<td>46</td>
<td>Bikaner Workshop</td>
<td>Bikaner</td>
<td>Bronze</td>
</tr>
<tr>
<td>47</td>
<td>Jodhpur Carriage Workshop</td>
<td>Jodhpur</td>
<td>Bronze</td>
</tr>
<tr>
<td>48</td>
<td>Rail Coach Factory</td>
<td>Kapurthala</td>
<td>Bronze</td>
</tr>
<tr>
<td>49</td>
<td>Gorakhpur Workshop</td>
<td>Gorakhpur</td>
<td>Certified</td>
</tr>
<tr>
<td>50</td>
<td>Loco, C & W Workshop, Dahod</td>
<td>Dahod</td>
<td>Certified</td>
</tr>
<tr>
<td>51</td>
<td>Parel Loco Workshop</td>
<td>Mumbai</td>
<td>Certified</td>
</tr>
<tr>
<td>52</td>
<td>EMU Mahalaxmi</td>
<td>Mumbai</td>
<td>Certified</td>
</tr>
<tr>
<td>53</td>
<td>Locomotive workshop, Jamalpur</td>
<td>Jamalpur</td>
<td>Certified</td>
</tr>
<tr>
<td>54</td>
<td>Bela Wheel factory</td>
<td>Bela</td>
<td>Certified</td>
</tr>
<tr>
<td>55</td>
<td>Budge Budge Bogie manufacturing facility</td>
<td>Kolkata</td>
<td>Certified</td>
</tr>
<tr>
<td>56</td>
<td>Kurduwadi Workshop</td>
<td>Kurduwadi</td>
<td>Under progress</td>
</tr>
<tr>
<td>57</td>
<td>Diesel Loco Shed, Vijayawada</td>
<td>Vijayawada</td>
<td>Under progress</td>
</tr>
<tr>
<td>58</td>
<td>Perambur Loco Workshop</td>
<td>Chennai</td>
<td>Under progress</td>
</tr>
<tr>
<td>59</td>
<td>Electric Loco Shed, lallaguda</td>
<td>Lallaguda</td>
<td>Under progress</td>
</tr>
<tr>
<td>60</td>
<td>Electric Loco Shed, Erode</td>
<td>Erode</td>
<td>Under progress</td>
</tr>
<tr>
<td>61</td>
<td>Sabarmati Loco Care</td>
<td>Ahmedabad</td>
<td>Under progress</td>
</tr>
<tr>
<td>62</td>
<td>Motibagh Workshop</td>
<td>Nagpur</td>
<td>Under progress</td>
</tr>
<tr>
<td>63</td>
<td>Electric loco shed, Vijayawada</td>
<td>Vijayawada</td>
<td>Under progress</td>
</tr>
</tbody>
</table>
11.2 Green Railway Stations

<table>
<thead>
<tr>
<th>SNO</th>
<th>Station</th>
<th>Zone</th>
<th>Final Rating Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Secunderabad</td>
<td>SCR</td>
<td>Platinum</td>
</tr>
<tr>
<td>2</td>
<td>New Delhi</td>
<td>NR</td>
<td>Platinum</td>
</tr>
<tr>
<td>3</td>
<td>Jaipur</td>
<td>NWR</td>
<td>Platinum</td>
</tr>
<tr>
<td>4</td>
<td>Chennai</td>
<td>SR</td>
<td>Certified</td>
</tr>
<tr>
<td>5</td>
<td>Varanasi</td>
<td>NR</td>
<td>Certified</td>
</tr>
<tr>
<td>6</td>
<td>Katra</td>
<td>NR</td>
<td>Certified</td>
</tr>
<tr>
<td>7</td>
<td>Howrah Station</td>
<td>ER</td>
<td>Silver</td>
</tr>
<tr>
<td>8</td>
<td>Kacheguda</td>
<td>SCR</td>
<td>Gold</td>
</tr>
<tr>
<td>9</td>
<td>Vijayawada</td>
<td>SCR</td>
<td>Gold</td>
</tr>
<tr>
<td>10</td>
<td>Tirupati</td>
<td>SCR</td>
<td>Gold</td>
</tr>
<tr>
<td>11</td>
<td>Anand Vihar</td>
<td>NR</td>
<td>Silver</td>
</tr>
<tr>
<td>12</td>
<td>Hazrat Nizamuddin</td>
<td>NR</td>
<td>Certified</td>
</tr>
<tr>
<td>13</td>
<td>Guntakal</td>
<td>SCR</td>
<td>Gold</td>
</tr>
<tr>
<td>14</td>
<td>Tiruchirappalli</td>
<td>SR</td>
<td>Gold</td>
</tr>
<tr>
<td>15</td>
<td>Rajendra Nagar Patna</td>
<td>ECR</td>
<td>Silver</td>
</tr>
<tr>
<td>16</td>
<td>Visakhapatnam</td>
<td>ECoR</td>
<td>Platinum</td>
</tr>
<tr>
<td>17</td>
<td>Chhatrapati Shivaji Maharaj Terminus</td>
<td>CR</td>
<td>Gold</td>
</tr>
<tr>
<td>18</td>
<td>Ratlam Junction</td>
<td>WR</td>
<td>Silver</td>
</tr>
<tr>
<td>19</td>
<td>Delhi Cantonment</td>
<td>NR</td>
<td>Silver</td>
</tr>
<tr>
<td>20</td>
<td>Delhi Sarai Rohilla</td>
<td>NR</td>
<td>Silver</td>
</tr>
<tr>
<td>21</td>
<td>Yeshwanthpur</td>
<td>SWR</td>
<td>Silver</td>
</tr>
<tr>
<td>22</td>
<td>Asansol</td>
<td>ER</td>
<td>Platinum</td>
</tr>
<tr>
<td>23</td>
<td>Coimbatore</td>
<td>SR</td>
<td>Platinum</td>
</tr>
<tr>
<td>24</td>
<td>Chittaurgarh Junction</td>
<td>WR</td>
<td>Gold</td>
</tr>
<tr>
<td>SNO</td>
<td>Railway Buildings</td>
<td>Rating type</td>
<td>Final Rating Level</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>1</td>
<td>IRICEN, Pune</td>
<td>New Building</td>
<td>Platinum</td>
</tr>
<tr>
<td>2</td>
<td>ICF Administration Building, Chennai</td>
<td>Existing Building</td>
<td>Platinum</td>
</tr>
<tr>
<td>3</td>
<td>Rail Nilayam, Hyderabad</td>
<td>Existing Building</td>
<td>Gold</td>
</tr>
<tr>
<td>4</td>
<td>Hyderabad Bhavan, Hyderabad</td>
<td>Existing Building</td>
<td>Gold</td>
</tr>
<tr>
<td>5</td>
<td>Supervisor Training Center, Hyderabad</td>
<td>Campus</td>
<td>Platinum</td>
</tr>
<tr>
<td>6</td>
<td>SEC railway Higher Secondary School, Bilaspur</td>
<td>School</td>
<td>Gold</td>
</tr>
<tr>
<td>7</td>
<td>Rail Vikas Bhavan, Guntur</td>
<td>Campus</td>
<td>Platinum</td>
</tr>
<tr>
<td>8</td>
<td>Divisional Railway Hospital, Ajmer</td>
<td>Healthcare</td>
<td>Silver</td>
</tr>
<tr>
<td>9</td>
<td>Rail Wheel Factory - Admin Building, Bengaluru</td>
<td>Existing Building</td>
<td>Platinum</td>
</tr>
<tr>
<td>10</td>
<td>Rail Saudha, Hubli</td>
<td>Existing Building</td>
<td>Gold</td>
</tr>
<tr>
<td>11</td>
<td>Supervisors Training Centre, Lucknow</td>
<td>Existing Building</td>
<td>Silver (2018), Platinum (2020) Receiver</td>
</tr>
<tr>
<td>12</td>
<td>ICF Silver Jubilee Matriculation Higher Secondary School, Chennai</td>
<td>School</td>
<td>Platinum</td>
</tr>
<tr>
<td>13</td>
<td>ICF Nursery & Primary School, Chennai</td>
<td>School</td>
<td>Platinum</td>
</tr>
<tr>
<td>14</td>
<td>Administrative Building at DMW Railway Colony</td>
<td>Existing Building</td>
<td>Platinum</td>
</tr>
<tr>
<td>15</td>
<td>Office Building of DRM Guntakal</td>
<td>Existing Building</td>
<td>Platinum</td>
</tr>
<tr>
<td>16</td>
<td>DRM Building Danapur</td>
<td>Existing Building</td>
<td>Silver</td>
</tr>
<tr>
<td>17</td>
<td>National Academy of Indian Railway, Vadodara</td>
<td>Campus</td>
<td>Certified</td>
</tr>
<tr>
<td>18</td>
<td>Railway Officers Enclave, New Delhi</td>
<td>Green Residential Society</td>
<td>Platinum</td>
</tr>
<tr>
<td>19</td>
<td>NWR Headquarters, Jaipur</td>
<td>Existing Building</td>
<td>Platinum</td>
</tr>
<tr>
<td>20</td>
<td>Northern Railway Central Hospital, Delhi</td>
<td>Healthcare</td>
<td>Platinum</td>
</tr>
<tr>
<td>21</td>
<td>Railway School Kalyan, Mumbai</td>
<td>School</td>
<td>Platinum</td>
</tr>
<tr>
<td>22</td>
<td>Rail Bhawan, New Delhi</td>
<td>Existing Building</td>
<td>Gold</td>
</tr>
<tr>
<td>23</td>
<td>DRM Office Building, Ratlam</td>
<td>Existing Building</td>
<td>Gold</td>
</tr>
<tr>
<td>24</td>
<td>Supervisor's Training Centre, Kharagpur</td>
<td>Existing Building</td>
<td>Gold</td>
</tr>
<tr>
<td>SNO</td>
<td>Railway Buildings</td>
<td>Rating type</td>
<td>Final Rating Level</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>25</td>
<td>Central Railway Hospital, Jaipur</td>
<td>Healthcare</td>
<td>Platinum</td>
</tr>
<tr>
<td>26</td>
<td>Administrative Building of Jagadhri Workshop, Haryana</td>
<td>Existing Building</td>
<td>Gold</td>
</tr>
<tr>
<td>27</td>
<td>Divisional Railway Hospital Agra</td>
<td>Healthcare</td>
<td>Gold</td>
</tr>
<tr>
<td>28</td>
<td>Divisional Railway Office, Ahmedabad</td>
<td>Existing Building</td>
<td>Gold</td>
</tr>
</tbody>
</table>

11.3 Other Green Certifications

Supervisor’s Training Centre (STC) Secunderabad, SCR had achieved **Gold** Certification in March 2018 under IGBC Green Campus Rating system. **STC, Lucknow/NR** achieved Silver Certification 2018-19 which was upgraded to **Platinum** in 2019-20.

ICF School, Chennai achieved IGBC Green Schools **Platinum** Certification and SECR Higher Secondary School (No. 1), Bilaspur achieved IGBC Green Schools **Gold** certification during the year 2017-18. ICF Silver Jubilee Nursery and Primary School, Chennai achieved IGBC **Platinum** rating in 2018-19. **Railway School Kalyan**, Mumbai / CR has achieved **Platinum rating in 2019-20**. Attempt to certify schools is unique as this will generate environmental awareness among next generation.

Railway Officers Enclave, S.P. Marg, New Delhi of Northern Railway achieved **Platinum** rating in Residential Societies during the year 2018-19.

Divisional Railway Hospital, Ajmer / NWR achieved Silver rating in Green Healthcare facilities in Sept., 2018 and was the first Railway Hospital to be Green certified. **Northern Railway Central Hospital, New Delhi** has achieved **Platinum** rating in this year 2019-20.
Environment friendly Bio–Toilets for Passenger Coaches

12.1 Indian Railways, in their commitment to provide hygienic environment to passengers and to keep station premises/tracks clean, have developed environment-friendly Bio-toilets for its passenger coaches. The technology has been developed jointly by Indian Railways (IR) and Defence Research & Development Organization (DRDO).

This environment friendly, low cost and robust technology, is the first of its kind in Railway Systems in the world. The efficacy of the bacteria used in this system has been tested by DRDO in extreme climates and conditions like those at Siachen Glacier. The anaerobic bacteria used in the bio-digester are hardy enough to survive extreme cold and heat and also survive when subjected to commonly available disinfectants. As stationary application, the technology is being used by Indian Army deputed at high altitude in Himalaya region.

12.2 In these bio-toilets, the waste retention tanks are fitted below the coach floor underneath the lavatories and the human waste, discharged/collected into them, is acted upon by a colony of anaerobic bacteria that convert human waste mainly into water and bio-gases (mainly Methane CH4 & Carbon Dioxide CO2). The gases escape into the atmosphere and waste water is discharged after disinfection onto the track. Raw human waste thus does not fall on the railway tracks and this keeps station premises/tracks clean.

12.3 The first train, Gwalior-Varanasi Bundelkhand Express, fitted with IR-DRDO bio-toilets was introduced in service in January 2011. After receiving encouraging feedback from the users and railways’ maintenance staff and based on the recommendation of Joint Working Group (JWG), the pace of fitment of these bio-toilets in IR’s passenger coaches was ramped up, very steeply especially in last few years.
Year-wise fitment of Bio-tanks from 2010-11 to 2020-21

With the installation of 25,89,90 bio toilets in 73,110 coaches (as on 31.03.21), the work of fitment of bio-toilets in all the passenger carrying coaches, running on Indian Railway has been successfully completed.

The direct discharge of human waste from trains has thus been eliminated in line with ‘Swachh Bharat Mission’.

This large scale deployment of bio-toilets in coaches has resulted in a paradigm shift in the level of cleanliness on railway tracks and especially at railway stations, where the foul smell/sight associated with human waste is not to be felt or seen any more.

12.4 The technology adopted by IR to eliminate direct discharge system from passenger coaches is the best suited one as it is developed indigenously. However, it is sensitive to misuse by passengers habits of throwing of items like plastic bottles, paper cups, cloth rags, sanitary napkin, nappies, plastic/poly bags, Gutkha pouches etc. in toilets that causes choking of these toilets and makes the toilet non-functional. Here, the passengers’ cooperation is of paramount importance for the success of these bio-toilets.

For this, awareness programme to educate the passengers on “How to use Bio-toilets - Dos & Donts” are regularly being conducted by Zonal Railways by means of providing stickers in coach toilets, playing audio/video clipping etc.
With an aim to provide clean and efficient toilets and to reduce the water consumption in toilets, IR is doing a trial of Bio-Vacuum toilets. This has aircraft type vacuum toilet on the passenger interface and bio-digester tank is fitted beneath the toilet area on the coach. The faecal matter gets digested in the bio-tanks on board. During the year 2018-19, ICF has provided bio-vacuum toilets in 230 AC coaches, MCF has provided in 24 coaches and RCF in 92 coaches. A total 547 bio vacuum toilets were installed in year 2020-21.
13.1 Solid Waste Management Rules, 2016 identify railways as a bulk waste generator. It also specifies the responsibilities of bulk waste generators. Segregation in three separate streams namely bio-degradable, non biodegradable and domestic hazardous wastes is emphasised. Waste hierarchy is the priority order in which the solid waste is to be managed by giving emphasis to prevention, reduction, reuse, recycling, recovery and disposal, with prevention being the most preferred option and the disposal at the landfill being the least.

Hierarchy of Integrated Solid Waste Management (ISWM)

- **Most Preferred**
 - At Source Reduction & Reuse: Waste minimization and sustainable use/multi use of products (e.g. reuse of carry bags/packaging jars)
 - Recycling: Processing inorganic waste to recover commercially valuable materials (e.g. plastic, paper, metal, glass; recycling; e-waste recycling)
 - Composting: Processing organic waste to recover compost (e.g. windrow composting, in-vessel composting, vermi composting)
 - Waste to Energy: Recovering energy before final disposal of waste (e.g. incineration, RDF)
- **Least Preferred**
 - Landfills: Safe disposal of inert residual waste at sanitary landfills

Road constructed with released sleepers in ER
13.2 Railways had taken up a pilot project for disposal of municipal solid waste (MSW) generated at Railway terminals in an environment friendly manner, including conversion of waste to energy. Pilot plants have been set up at Jaipur and New Delhi Railway Stations which convert bio-degradable waste to energy through bio-methanation process. Energy generated from these plants would be utilized for suitable services at/ nearby Railway Station.

Bio-degradable waste to energy bio-methanation plants have also been set up at Mumbai Central Station / WR, Coaching depots at Puri and Bhubaneswar in ECoR, Liluah Workshop / ER, Mysore Workshop / SWR, NWR HQ Jaipur and RWF Bangalore.

ECoR has commissioned a Waste to Energy Plant based on Poly crack technology at Mancheshwar Workshop.

13.3 Zonal Railways and Production Units have taken initiatives to set up solid waste management facilities including segregation and waste processing methods such as composting, vermi-composting, bio-methanation for bio-degradable waste and recycling of recyclable waste.

Waste to compost plants have been set up at over 60 locations for conversion of bio-degradable waste into compost. Integrated waste management system is commissioned at ICF where about 6 ton per day bio-degradable waste from the colony is converted as compost.

13.4 Detailed instructions regarding waste management have been issued for prompt disposal of waste arising out of catering services at stations and in trains.

Instructions have been issued to keep separate dustbins for dry waste and wet waste to enable segregation. 639 Plastic bottle crusher machines have been installed at 441 stations.

Provision of dustbins is being done in sleeper coaches also in addition to AC coaches provided earlier. Dust bins are also being provided in bio-toilets in all coaches.
14.1 Shield on Environment Management

An MR’s shield has been instituted to be given for best performing ZR/PU on Environment management. First shield was awarded in April, 2016. Station Cleanliness and Train Cleanliness Shields have been merged with Environment Management Shield from the year 2016-17.

14.2 Affordable potable drinking water

In order to provide potable drinking water on affordable rates to the railway passengers, Ministry of Railways has mandated IRCTC to install Water Vending Machines (WVM) on stations. Detailed policy guidelines have been issued in this regard vide CC No. 36/2015 dated 16/06/2015. This policy also stipulates that the reject water shall be used by Railway for platform washing, apron cleaning, toilets etc. i.e. conservation of water, being a precious natural resource. This is also an important step in the direction of reducing the production and consumption of plastic bottles.

14.3 EMS / IMS Certification

All 8 Production Units and 43 major Workshops are certified to ISO 14001: Environment Management System (EMS) / Integrated Management System (IMS). 38 Diesel Sheds, 61 Coaching Depots, 21 Freight Depots and 8 Electric Loco Sheds have been certified. 3 MEMU/ DEMU Car Sheds, 2 Engineering Workshops and 1 Stores Depot are also certified.

As a new initiative, over 200 Railway Stations have been certified for implementation of Environment Management System to ISO: 14001 in the year 2019-20, which at present has increased to 687 stations. This is also in compliance of Hon’ble NGT requirements.

14.4 ISO 50001

Integral Coach Factory, Chennai was the first major establishment over IR to be certified with ISO: 50001 - Energy Management System, in August 2015. All 8 Production Units and 44 major Workshops have achieved ISO: 50001 certification showing commitment to energy conservation and energy efficiency.

14.5 Noise reduction in power car

Present design power car employing two DG sets has noise level of 99 dBA. RCF has manufactured two such power cars with acoustic panel and reorientation of radiator assembly which was introduced in service in April, 2017 and has resulted in reduction of noise level to 81 dBA. The power car is presently running in train no. 22415/16 NDLS-VSKP AC express and 12497/98 NDLS-ASR Shan-e-Punjab express with satisfactory performance. PUs are manufacturing all power cars with low noise feature.

14.6 Plastic Bottle Crusher Machines are being installed at Railway Stations. 639 plastic bottle crushing machines have been installed at 441 stations.
14.7 Sanitary Napkin Vending Machines and Incinerators are being installed at a number of stations.

14.8 Implementation of e-Office

E-office is Cloud Enabled Software Application developed by NIC. The software helps to improve efficiency, productivity and accountability & Transparency in the workplace by creating a reliable, efficient and effective way to handle office files & documents. A digital workplace also ensures less consumption of paper thus promoting a green workplace.

E-Office has been rolled out at 174 Railway locations covering Railway Board, all Zones, Divisions, Production Units, RDSO, CTIs, Workshops and other Railway units.

14.9 Provision of TPaaS (Telepresence-as-a-Services)

To make a multiparty Video Conference from far-flung location to Railway Board/Zonal Offices/Divisional Offices or other locations, Tele presence system has been provided. It covers more than 115 locations, including all divisional offices, zonal offices, Railway Board, Railway PUs, Training Institutes, RDSO and PSUs over Indian Railway. This system is reducing the travel of senior officers for meeting and saving useful and productive time.

14.10 Electrical/Electronic Interlocking and Centralized Traffic Control

84 mechanical lever frame signalling have been replaced this year with Electrical/Electronic Interlocking signalling system including major yards at Danapur, Patratu and Bhilai Exchange yard. This will result in savings in coal and diesel used in maintenance of mechanical level frames.

24 hours shifts of Centralized Traffic Control (CTC) Tundla started from March 2019 covering 26 stations and 250 Route Km on Aligarh-Kanpur section. Power consumption at wayside stations reduces with CTC operations.

14.11 Saving paper saving Trees

Railway Recruitment Boards have introduced online examination through Computer Based Test (CBT) for all Group ‘C’ posts since 2015 and also for Group ‘D’ posts in 2018. RRBs have dispensed with paper pen examination (OMR sheets).

MCDO portal has been developed with CRIS for online submission of monthly MCDO to Railway
Only limited copies of Budget books/ booklets like Pink Book are printed now and all required books are available online. With merger of Rail Budget with General Budget, the requirement has further come down.

14.12 Capacity Building

Capacity building programmes on Environment Management and Sustainability are organised at different Training Institutes. A number of courses were conducted at NAIR, IRITM and IRIMEE during the year. A virtual capacity building program on Sustainable Public Procurement was conducted at NAIR with the assistance of Switch Asia/UNEP for all levels of management.

14.12 Provision of telepresence/VC Facility:

The use of Telepresence/VC facility for various meetings/conducting online classes is helping in reducing the carbon footprint. 100 Webex Users Host Admins (Internet based VC facility) with audio and video have been taken for Zonal Railway/ Centralized Training Institutes (CTIs) for conducting VCs/Online Training during the COVID-19 pandemic.

14.13 Online consultation with Doctors in Railway Hospitals:

During the COVID-19 Pandemic, facility for online consultation with Doctors has also been rolled out in Railway Hospital in various zones, which besides helping in combating the virus is also helping in reducing the carbon footprint.
With a pan-India network and linkages to various sectors of the economy, the Indian Railways has always considered environmental management as part of the core operating strategy. A renewed focus and thrust has been given in its activities to achieve a better environment with the launching of the new Environment and Housekeeping Management Directorate in the Railway Board. Some important policy initiatives taken in recent years are noted below:

15.1 Policy on Water Management

- Water Recycling plant to be provided at major water consumption centres subject to techno-economic viability
- Rain water harvesting system to be provided
- Water audit to be done at major water consumption colonies / installations / stations
- Revival of water bodies
- Inclusion of Automatic Coach Washing Plant with Water Recycling in all major coaching depots

Automatic Coach Washing Plant with Water Recycling at Hazrat Nizamuddin Coaching Depot
15.2 Policy on Energy Management
- 5% energy consumption to come from alternative sources
- Retrofitting with efficient lighting and other star-rated appliances
- Production of only energy efficient 3 phase electric locos from 2016-17 onwards
- Provision of LED lights in coaches during POH
- Use of 5% bio-diesel in traction fuel
- 20% CNG substitution in DEMUs
- 100% Green Powered Stations started
- Certification to EMS 50001 Energy Management System
- IR has joined the Perform, Achieve and Trade (PAT) Programme of Bureau of Energy Efficiency (BEE) showing its commitment for improving energy efficiency

15.3 Waste Management
- All existing coaches fitted with conventional toilets have been fitted with environment-friendly bio-toilets.
- Provision of dustbins in sleeper coaches also in addition to AC coaches
- Provision of dustbins in bio-toilets in all coaches
- Provision of separate dustbins for bio-degradable and non-bio-degradable waste and more dustbins at stations
- Pilot Plants for Solid Waste Management at major railway stations

15.4 Funding of Environmental Sustainability Works
- Policy frame work to earmark 1% lump sum provision in all works/project estimates towards environment related works has been issued and this has been made part of D&G charges of estimates
- Policy frame work to undertake environmental sustainability works by Zonal Railways through CSR has been put in place

15.5 Other Green policy initiatives
- MOUs with States for planting of trees on vacant railway land
- Use of plastics of less than 20 micron thickness in packaging is banned
- EMS/IMS certification for all PUs, Workshops, Loco Sheds and major Coaching and Wagons Depots
- Green Certification of Railway establishments
- 687 major Railway Stations have been certified for implementation of Environment Management System to ISO 14001 in 2019-20.
‘Consent to Establish’ and ‘Consent to Operate’ / ‘Consent for Operation’ for stations, siding and goods sheds to be taken from State Pollution Control Board in accordance with the provisions of SPCB, keeping in view the notified areas / air pollution control areas and categorisation of Industrial Sectors. Around 350 stations obtained ‘Consent to Establish’ and ‘Consent to Operate’ / ‘Consent for Operation’ from concerned SPCB in year 2020-21.
Some important Waste Management Rules

- S.O. 1357(E) [08-04-2016] : Solid Waste Management Rules, 2016
